Transportation Development Impact Fee (DIF) Program Nexus Study

Prepared for: CITY OF RANCHO CUCAMONGA

February 11, 2025

OC22-0937.01

FEHR PEERS

Table of Contents

Executive Summary	1
What is the Citywide Transportation Development Impact Fee (DIF)?	1
Who pays the DIF?	1
How is the DIF calculated?	1
How are fees assessed?	2
Introduction	3
Nexus Study Scope	3
Regulatory Context	3
California Government Code	3
California Assembly Bill 602	4
California Environmental Quality Act (CEQA)	5
Citywide Transportation Development Impact Fee (DIF)	5
Other DIF Considerations	5
Methodology	6
Data Collection	6
Cost Estimation	7
Maximum Allowable Fee	7
Other Considerations	8
Summary of Findings	8
Fee Structure and Development	9
Purpose of Impact Fee Program	9
Existing Service Population and Transportation Facilities	10
Development Trends	10
Infrastructure Improvements	13
Facility Standards	13
Infrastructure Changes	14
Transportation Project List and Estimated Costs	15
Cost Estimating Assumptions	15
Existing Deficiencies	16
Nexus Analysis	19
Need	19
Renefits	20

Cost Allocation	23
Total Program Costs	25
Maximum Fee Calculation	26
Fee Implementation	30
Steps to Calculate Transportation Impact Fees	30
Step 1 – Determine Project Description and Land Use Quantities	30
Step 2 – Apply Transportation Impact Fees	30
Example Calculation	31
Step 1 – Determine Project Description and Land Use Quantities	31
Step 2 – Apply Transportation Impact Fees	31
Program Administration	31
Program Administration	31
Program Update	32
Program Reporting	32
Unique Land Use Categories	33
Refund Provisions	33
Grievances	33
Appendices	35
Appendix A – Resolution No. 20-122	36
Appendix B – Completed DIF Projects List (Resolution No. 20-122)	37
Appendix C – DIF Project List and Project Cost Estimates	40

List of Tables

Table 1 – Unit Cost Estimates ¹	7
Table 2 – Existing Facilities	10
Table 3 – Development Trends	11
Table 4 - Trips Between Zones	12
Table 5 – Existing Transportation Facilities per Service Population	14
Table 6 – Projected Facility Need Based on Service Population Growth	14
Table 7 – Development Impact Fee Project Improvements	15
Table 8 – Cost Adjustments for Deficient Roadway Facilities	18
Table 9 – Land Use Growth	20
Table 10 – Facility Needs to Maintain Existing Facility Standards	21
Table 11 – Vehicle Miles Traveled Projections	
Table 12 – Effects of DIF Projects on Citywide VMT	23
Table 13 – Equivalent Dwelling Unit (EDU) and Cost per Square Foot Estimates	24
Table 14 – DIF Program Cost Total	26
Table 15 – Cost per Trip Citywide	27
Table 16 – Total Cost of Improvements By Zone	27
Table 17 – Cost per Trip and Cost per EDU	27
Table 18 – Maximum Fee Calculation	29

Executive Summary

What is the Citywide Transportation Development Impact Fee (DIF)?

The Transportation Development Impact Fee Program ("DIF") is a type of development impact fee created to address the impacts of new residents and workers utilizing transportation-related infrastructure, such as roads, intersections, bridges, as well as facilities that serve transit, pedestrians and/or non-motorized vehicles (e.g., trails, bike lanes, sidewalks, etc.). The fee is established such that new development and redevelopment projects will pay their "fair share" towards new and expanded transportation infrastructure and facilities that mitigate the impacts caused by this growth.

Who pays the DIF?

Development impact fees are paid for by applicants of land use development and redevelopment projects including, but not limited to, residential, office, retail, and industrial uses.

How is the DIF calculated?

The Citywide Transportation Development Impact Fee (DIF) is calculated based on this Nexus Study prepared per the requirements of the Mitigation Fee Act. Fees established herein follow the fundamental legal tenets of having an essential nexus (relationship), and being roughly proportional, to the impacts which the fee is designed to mitigate. The relationship is drawn between transportation related impacts of future development and the necessary transportation infrastructure improvements, such as roadway expansion and non-motorized transportation facilities, identified to support the increased demand. The costs associated with the identified improvements are then proportionally related to future development quantified by the magnitude of anticipated impacts. As the DIF is a type of development impact fee

program, it is designed to account for the impacts of future developments and does not address existing deficiencies. Specifically, fee programs cannot charge for new development to fix existing deficiencies and, as such, this study needs to identify whether there are existing deficiencies on the system and ensure that the cost to fix those deficiencies is not burdened onto future development. This is typically evaluated related to roadway capacity where a segment or intersection may not be operating at the city's defined acceptable threshold. In this instance, the full cost of the improvement cannot be burdened onto new development (although new development can be burdened with their "fair share" of the cost of the improvement).

How are fees assessed?

The DIF fees are assessed based on the anticipated impact of new developments on the transportation infrastructure, calculated using the Equivalent Dwelling Unit (EDU) method as land use from the City's General Plan only includes estimated growth in number of units, not in sq. ft., for residential uses. Assessed fees are proportional to the development's estimated increase to transportation demand, with different land use categories, such as residential, commercial, and industrial, assigned appropriate rates based on their impact. The fee assessment process involves identifying the project's land use, calculating the number in units of a particular land use category, and applying fees based on the calculated maximum allowable fee and adopted fee schedule. Pursuant to Government Code Section 66016.5(a)(5)(A), residential DIF fees, although initially estimated using EDUs, are then converted to a per square foot fee basis rather than a per dwelling unit basis.

Introduction

Nexus Study Scope

This Transportation Impact Fee Program Nexus Study ("Nexus Study" or "Study") provides the technical documentation to support the City of Rancho Cucamonga's ("City") update of the Citywide Transportation Development Impact Fee (DIF) program by defining the relevant geographic boundaries, the types of development projects to which the fee is imposed, and the types of transportation infrastructure to be funded by the fee program. Since its inception in 1991, the City's DIF has worked continuously to fund infrastructure improvements throughout the City to support its growth. By updating the DIF with current growth estimates, changes to infrastructure needs, recent infrastructure costs, and the associated fee basis this Study re-evaluates the service standards of existing transportation facilities, the need for planned facilities to maintain a consistent standard of transportation service and determine a justifiable cost per unit of demand by future developments.

The Nexus Study provides the basis for the City to collect fees consistent with the California Mitigation Fee Act (AB 1600/Government Code 66000 et seq.). This analysis also demonstrates that the fees established have a reasonable relationship based on the needs, benefits, and proportionality to the impacts which the fee is designed to mitigate.

Regulatory Context

California Government Code

The California Government Code §§ 66000-66025, often referred to as the Mitigation Fee Act, governs how local governments can impose development impact fees. This legislation ensures that such fees are both legally defensible and equitable. The Mitigation Fee Act allows the City to adopt an ordinance that

City of Rancho Cucamonga Transportation Development Impact Fee Program Nexus Study

enables the fee and defines the program structure. The fee may be updated periodically when supported by a technical analysis and approved by City Council.

In establishing, increasing, or imposing a fee as a condition for the approval of a development project¹, Government Code §§ 66001(a) and (b) state that the local agency must:

- Identify the purpose of the fee.
- Identify how the fee is to be used.
- Determine how a reasonable relationship exists between the fee established and type of development project for which the fee is imposed.
- Determine how the need for the public facility relates to the type of development project for which the fee is imposed.
- Demonstrate the relationship between the fee and the cost of the public facility.

Once the DIF is adopted, this Nexus Study and the technical information it contains will be maintained and reviewed periodically by the City to ensure impact fee accuracy and to enable the adequate programming of funding sources. To the extent that transportation improvement requirements, costs, and development potential changes over time, the fee program will need to be updated.

California Assembly Bill 602

Effective January 1, 2022, AB 602 requires that impact fees levied on residential development must be calculated such that they are proportional to the square footage of future units. A nexus study must evaluate how existing and future residential development can be estimated by residential square feet or document why the use of residential square feet is not relevant as it would not appropriately reflect the relationship between the fee, facility demand, and residential land use.

Effective July 1, 2022, AB 602 also mandates that large jurisdictions² adopting a nexus study shall adopt a capital improvement plan as a part of the nexus study. At the time of this Study's development, the residential population within the County of San Bernardino is approximately 2.18 million³ and thus, a Capital Improvement Plan (CIP) is required as a part of this Study. The City of Rancho Cucamonga updates and publishes the Capital Improvement Program as part of the annual citywide budgeting procedure, and the latest documentation can be found on the City's website. Further, the City has prepared a draft amendment to the Capital Improvement Plan (as incorporated into the Major Project's Program) to be

F

4

¹ Development includes any land use activity that involves construction of residential, commercial, industrial, office, or other non-residential improvements which requires the issuance of a building permit. Such improvements are generally expected to create additional impacts to the City's transportation infrastructure once completed through additional travel demand associated with the proposed use.

² As defined in Section 53559.1 of the Health and Safety Code, "Large jurisdiction" means a county with a population of more than 250,000, or any city within that county.

³ United States Census Bureau, 2023 ACS 1-Year Estimate

considered as part of the establishment of fees under the DIF program. The amendment is available for review under separate cover.

California Environmental Quality Act (CEQA)

Impact considerations by CEQA are not applicable to fee programs, since such programs are government funding mechanisms which do not involve any commitment to specific projects that may result in a potentially significant physical impact on the environment and therefore not "projects" which would be subject to CEQA⁴. However, necessary environmental documents shall be prepared prior to the construction phase of capital improvement projects, funding by the DIF or otherwise, unless such projects are otherwise determined to be exempt from CEQA.

Citywide Transportation Development Impact Fee (DIF)

On April 18, 1991, the City Council of the City of Rancho Cucamonga adopted Ordinance No. 445 creating and establishing the authority for imposing and charging citywide transportation development fees. The ordinance modified the Rancho Cucamonga Municipal Code (RCMC) to describe the purpose, basis, limited-use, and mechanism for future adjustments of the fee program. Subsequently, the City adopted Resolution No. 91-092 and established the definition of "Development Projects" subject to the fee program, methodology to calculate the cost per "Equivalent Dwelling Unit" (fee schedule), use of the collected fees, the process by which fees are assessed and updated, and a list of programmed projects and associated costs. Over the decades, the fee program has been periodically updated to account for increased costs based on engineering and construction cost adjustment factors.

The most recent iteration of the adopted fee program was adjusted in 2020 by Resolution No. 20-122 (**Appendix A** – Resolution No. 20-122). Government Code Section 66016.5(a)(4) as amended by AB 602 requires local agencies adopting increases to existing DIF program fees review the assumptions in the prior study as part of a new nexus study. Since the adoption of Resolution No. 20-122, the City approved a General Plan update that set forth a renewed vision for the community including anticipated development patterns, population growth estimates, and transportation needs. Further, since that time, construction costs have increased dramatically for public improvements. This study has reviewed the prior assumptions and incorporated currently available data and assumptions as more appropriate to the analysis considered in this study.

Other DIF Considerations

Existing State law provides that certain types of projects, largely involving housing, are exempt from or receive a reduced or vested development impact fees (exceptions). These exceptions include, for example, a prohibition on impact fees for accessory dwelling units of 750 square feet or less and vested impact fees for qualifying housing development projects subject to a preliminary application under the Housing

⁴ CEQA Guidelines Section 15378(b)(4)

Accountability Act, SB 330. Such exceptions may change over time. As a Pro Housing jurisdiction, the City of Rancho Cucamonga recognizes the importance of providing more housing and affordable housing for all income levels. To that end, the city supports current State law in this regard and intends to comply with future changes in this area.

This nexus study anticipated all future development in the city without considering the potential applicability of any exceptions to the impact fees applied to such development. This is because, among other reasons, it is not possible to determine whether any particular project will qualify for an exception and then to what extent. It is speculative to forecast that a certain amount of development expected in the city will be attributable to projects that qualify for exceptions. To be sure, the value of any potential exception was not re-allocated or re-distributed to other development projects. Therefore, no project will subsidize any lost revenue caused by a project that qualifies for an exception, and any shortfalls in funding for exempt or reduced fee projects will be made up through grants or other local discretionary funding sources.

Further, the City has long recognized that for some development projects there is mutual benefit for the developer to construct public improvements that are part of the impact fee program's list of capital projects. In accordance with the applicable provisions of the Rancho Cucamonga Municipal Code and other laws, the developer may be eligible for a credit against the amount of the relevant impact fee for the cost of the improvement when the development impact fee is calculated. To ensure the sustainability and equity of the program, such credits are equal to the estimated value of the improvements and/or dedicated land as outlined in the nexus study, as adjusted and in effect as of the date the fees are calculated.

Finally, the City seeks to defray the cost of construction for public infrastructure through alternative means such as grant programs. The City proactively pursues grants and other funding mechanisms; however, the City does not have the ability to guarantee a certain percentage of grant awards toward projects within this DIF program. In order to ensure that new development funds its fair share of the improvements in this program, applicable grant awards will be first used to offset the appropriate project cost share attributable to existing development and then remaining grant awards (if any) will be used to offset the cost borne by the fee program unless the grant award is specifically made to offset new development costs. Should new development costs be offset by grant or other funding mechanisms, such offset will be accounted for in the next major update to this nexus study.

Methodology

Data Collection

This Study utilized data from various citywide planning documents, including the Rancho Cucamonga General Plan (Plan RC), City of Rancho Cucamonga Active Transportation Plan (Connect RC), City of Rancho Cucamonga ADA Transition Masterplan, historic fee programs, Capital Improvement Program

(CIP) cost estimates and records, and publicly available United States Census Data and American Community Survey (ACS) Estimates.

Cost Estimation

The cost estimation for transportation infrastructure improvements in Rancho Cucamonga is based on the most recent and relevant project cost estimates and records. For each type of infrastructure – such as roadway lane miles, bicycle lanes, sidewalks, and trail facilities, the cost per unit of improvement is determined by referencing recent costs and adjusting for factors such as construction materials, labor, environmental compliance, and project-specific contingencies. Basic unit cost estimates applicable to multiple facilities are listed in the table below.

These unit costs are then applied to the quantity of infrastructure needed to support future development, stipulated on the anticipated growth in demand. To ensure that the fee program remains responsive to changing economic conditions, cost estimates are indexed to industry standards (e.g. Caltrans Contract Cost Index). This ensures that projected costs account for inflation and other future economic factors.

Table 1 – Unit Cost Estimates¹

Facility Type	Unit	Cost per Unit
Roadway Widening (Full Section) ²	Lane Mile	\$1,325,000
Bridge Widening ³	Square Feet	\$250
Intersection Improvement – New Traffic Signal ²	Each	\$750,000
Intersection Improvement – Traffic Signal Modification ²	Each	\$50,000
Intersection Improvement – Roundabout ⁵	Each	\$1,500,000
Multi-Use Trail ⁴	Mile	\$1,000,000
Class II Bike Lane ⁴	Mile	\$300,000
Class III Bike Route ⁴	Mile	\$100,000
Class IV Separated Bikeway ²	Mile	\$1,000,000
Sidewalk ⁴	Square Feet	\$30
Corridor Active Transportation Improvements ²	Mile	\$10,000,000 \$50,000,000 for Foothill/Haven Complete Street Improvements

^{1.} This table contains unit cost estimates before adjustments to develop project cost estimates in Appendix C. Total project cost estimates include construction materials, labor, environmental compliance, and project specific contingencies

Maximum Allowable Fee

The maximum allowable fee is calculated by the following steps.

^{2.} City of Rancho Cucamonga 24/25 CIP estimates (2024)

^{3.} Caltrans Comparative Bridge Costs (2019)

^{4.} City of Rancho Cucamonga Active Transportation Plan (Connect RC) (2023)

^{5.} National Cooperative Highway Research Program (NCHRP) Report 672 & 1043 (FHWA, 2010, 2023)

- 1. Identify total program costs cost for improvements plus cost for implementation
- 2. Account for known funding (current fund balance) and fee credits (amount to be subtracted from fund balance due to outstanding obligations such as improvement reimbursement programs discussed in later sections of this Study)
- 3. Account for existing deficiencies
- 4. Account for administrative fees
- 5. Determine proportional allocation of cost to new development

Other Considerations

- Developmental growth can fluctuate. By accounting for growth between 2024 and 2040, the updated fee program and maximum fee consider only the remaining growth through buildout of the General Plan with a planning horizon of 2040.
- While the Study establishes a justified fee based on proportional costs of infrastructure
 improvements for new development, the City Council retains the authority to adopt
 transportation impact fees lower than the maximum allowable amounts calculated in the Nexus
 Study. This flexibility allows the Council to balance the need for infrastructure funding with
 considerations such as encouraging development or addressing affordability concerns, while still
 maintaining compliance with the California Mitigation Fee Act.
- The fee program is designed specifically to address transportation infrastructure needs generated by new development and does not cover the cost of remedying existing deficiencies in the system. Under the California Mitigation Fee Act, impact fees can only be used to fund improvements proportionate to the impacts of future development. As a result, any existing deficiencies, such as under-capacity roads or outdated infrastructure, must be addressed through alternative funding sources.

Summary of Findings

The findings of this Study support the implementation of a transportation development impact fee program through the following steps,

- Identify the purpose of the fee
- Account for existing population and projected growth
- Determine the appropriate facility standards
- Provide cost estimates of necessary improvements
- Demonstrate the need, benefit, and fair share responsibility of the public facilities

Transportation related development impact fees will be assessed per unit of land use proposed in the amount no more than the Maximum Fee Calculations provided at the end of this Study.

Fee Structure and Development

Purpose of Impact Fee Program

An impact fee program is often utilized to ensure that new developments contribute to the cost of public infrastructure that are proportional to the additional demand created by the development projects. As cities grow, new residential, commercial, and industrial projects increase the burden on the existing transportation networks. Without an impact fee program, the financial burden of accommodating this growth would fall disproportionately on existing residents, who would be forced to subsidize the infrastructure needs caused by new development.

In the last decade, Rancho Cucamonga experienced significant growth, with the residential population increasing by approximately 9,800 and a similar rise in the number of employees⁵. As projected growth continues, the City's General Plan lays out a comprehensive vision that relies on well-maintained and effective infrastructure. The impact fee program is essential to securing sufficient funding for new and expanded facilities that support the City's long-term operational goals and maintain the desired quality of service for all residents and businesses.

⁵ Number of residents grew between 2010 and 2020 from an estimate of 165,000 to 176,000, number of employments increased from 80,700 to 89,400. ACS 5-year Estimates.

Existing Service Population and Transportation Facilities

The City of Rancho Cucamonga serves an existing population of approximately 176,274 residents and 89,717 employees, with a population density of around 3,790 residents per square mile. This diverse and growing population places significant demands on the city's infrastructure, public services, and amenities. To support an estimated 10 million vehicle miles traveled per day, the City maintains approximately 1,152 lane miles of roadway, 31 miles of mixed-use trails, 107 miles of bicycle facilities, 102 miles of sidewalk and pedestrian facilities, and over 200 traffic signals across the 46.5 square mile jurisdiction.

Throughout recent years, the City of Rancho Cucamonga has undergone various types of citywide planning efforts. The studies associated with the plan development process are referenced to provide a fundamental description of the City's existing conditions and inventory of its transportation infrastructure.

Source Unit Quantity Plan RC Roadway Lane Mile 1,152.2 Trails Connect RC Mile 30.7 Bike Lane Connect RC Mile 106.8 Sidewalk Facilities ADA Transition Masterplan Mile 102.0

Table 2 – Existing Facilities

Besides roadways, trails, bike lanes, and sidewalks, there exists a wide range and variety of transportation facilities that serve the Rancho Cucamonga population. Some aspects of such improvements are difficult to measure tangibly, such as safety, comfort, equity, and access to the system; but are all crucial to the viability of an effective transportation system. Infrastructure such as the traffic management systems, access to regional transit systems, and an overall transportation to support active and healthy mobility are all crucial elements of a system to foster sustainable development.

Development Trends

What types of existing and new development are occurring, and are there geographic differences that might affect the need for facilities and associated fees charged to certain types of development in an area?

Land use growth and new development require the support of transportation infrastructure. It is imperative to estimate the amount of new development expected to take place within the planning horizon, and the additional transportation facilities that would be required, to prevent overburdening the existing service population (residents and employment) with the cost of new improvements. According to the City's General Plan, the number of residential units are anticipated to grow by 3,944 Single Family Residential (SFR) units (SFDU), and 21,741 Multifamily units (MFDU), leading to an estimated increase of 57,613 residents by buildout of the General Plan. The number of employees is also expected to grow across various industries including retail, education, office, and construction amongst the highest growing sectors.

Table 3 - Development Trends

	General Plan Existing Year (2018)	General Plan Buildout Year (2040)	Change	% Change
Residents	176,274	233,887	57,613	32.7%
Employees	89,717	110,948	21,231	23.7%
Total Service Population (Residents + Employees)	265,991	344,835	78,844	29.6%

Although development projects will take place in specific parcels across the city, the city's transportation network is designed to serve all areas. However, improvements in a specific area tend to benefit development within that area more than development in a different area of the city. To that end, and to ensure that there is a localized nexus between new development and improvements needed to serve that new development, several geographies were reviewed to ensure that the local areas were burdened the most for local benefits. This approach, known as a zone-based fee program, was identified as the most appropriate way to implement a fee program for the city.

This study utilized a "band approach" whereby the city was divided into three bands, with a northern, central, and southern zone incorporated into the fee program.

The zones were identified based on their predominant east-west travel patterns within the City and the region. Further, the boundaries of the zones align with the travel-sheds of the major east-west travel corridors of SR-210 and Foothill Boulevard. The zones have been identified as shown in the graphic below and are bound as follows:

- North Zone North of 19th Street from the west City Limits to Haven Avenue and north of SR-210 from Haven Avenue to I-15
- Central Zone South of the North Zone and north of Foothill Boulevard
- South Zone South of Foothill Boulevard

RENTWOOD SCOUNS RATALOMA Central GRAPELAND CONTRAL GRAPELAND CONTRAL GRAPELAND GRAPHAND GRAPELAND GRAPELAND GRAPELAND GRAPELAND GRAPELAND GRAPHAND GRAPELAND GRAPELAND GRAPELAND GRAPELAND GRAPELAND GRAPHAND GRAPH

Zonal Approach – North, Central and South Zones

Utilizing this approach assisted in understanding where new trips were being generated in addition to how trips generated from one zone were attributed to other zones of the city. **Table 4** summarizes the trip interactions between the zones as estimated by the city's General Plan travel demand model. In this instance, 74.7% of the total cost of projects in the north band of the city are the responsibility of local development projects, and development in other parts of the city are responsible for their fair share contribution to trip making in that north band zone.

The General Plan forecasting used the San Bernardino County Travel Demand Model (SBTAM) for the assessment, which, at the time the General Plan was completed, was the state-of-the-practice tool available for estimating travel patterns and traffic volumes associated with changes to land use and the transportation network within the County. By utilizing the travel demand model developed for the City's General Plan update, this approach ensures that the assumptions that informed the General Plan update are integrated into the fee program analysis.

Table 4 - Trips Between Zones

To\From	North	Central	South	Total
North	74.7%	15.9%	9.4%	100%
Central	6.8%	78.4%	14.8%	100%
South	4.6%	17.9%	77.5%	100%

Infrastructure Improvements

Facility Standards

Establishing an appropriate facility standard is crucial for ensuring that the future inventory of transportation infrastructure in Rancho Cucamonga meets the demands of new development while aligning with the city's long-term goals. The following standards are derived from the City's adopted policies and standards.

Complete Streets Standards – The General Plan emphasizes the creation of Complete Streets, designed to safely and efficiently accommodate all users, including pedestrians, cyclists, motorists, and transit riders. Paired with the recently adopted Active Transportation Plan (Connect RC), multimodal elements such as mixed-use trails, bike lanes, sidewalks, and transit accommodations will be integrated as a critical component of the transportation network. This ensures that new developments contribute their fair share to a transportation system that is inclusive and accessible to all residents by mitigating increased demand for mobility generated by new development within the City. The General Plan identifies a desire for the City to investigate and set service levels by travel mode in the future based on the modal priority on the street. Although this multi-modal level of service approach has not yet been implemented, the General Plan sets clear expectations related to implementing complete streets and prioritizing non-automotive modes of travel. Furthermore, the General Plan has set specific standards related to greenhouse gas (GHG) reduction targets which rely on a reduction in vehicles miles of travel (VMT). This Study utilizes VMT reduction as a potential nexus; but it also looks to ensure that bicycle and pedestrian infrastructure are delivered to residents at a rate consistent with that currently provided (e.g. maintaining mileage of bicycle or pedestrian facilities per capita). As previously noted, new development accounts for 29.6% of the population and employment growth in the city (the remainder are existing residents). As such, complete streets improvements that assist the city in achieving its GHG reduction targets can only be funded at 29.6% of the total cost for those improvements through the DIF program (grants and other funding will be required to achieve full funding of these projects).

Roadway Capacity and Quality – Maintaining efficient traffic flow and safety is a priority in the General Plan, especially on automobile priority streets. To address this, facility standards will include minimum levels of service (LOS) for roadways (LOS D, or V/C of 0.9), ensuring that necessary improvements are included to handle the increased traffic generated by new developments. This standard ensures that the road infrastructure remains functional and safe as the city grows. The following information related to roadway facilities supports and helps to validate the rough proportionality of the program and how it relates to new development.

Table 5 – Existing Transportation Facilities per Service Population

Facility	Unit	Quantity/1,000 Service Population
Roadway	Lane Mile	4.33
Trails	Mile	0.12
Bike Lane	Mile	0.40
Sidewalk Facilities	Mile	0.38

In addition to multimodal and roadway capacity considerations, the City's General Plan also emphasizes the need to maintain an effective transit infrastructure, enhance safety and accessibility of the transportation system, and promote scalable and sustainable growth, all of which are supported by projects to transform the city according to the layered circulation network approach.

Infrastructure Changes

By utilizing previously collected fees, the City has delivered various infrastructure projects including expansion of bridges, roadways, freeway interchanges, and traffic signal improvement projects. A list of completed projects that are removed from the previously adopted DIF program is provided in **Appendix B**, which totals roughly \$137,400,000 of infrastructure improvements in 2020 dollars.

Based on the change in service population between existing year and General Plan buildout year, a proportional increase of transportation infrastructure would be required to maintain a consistent standard of transportation services. The projected need for transportation facilities is calculated in proportion to the amount of growth in service population anticipated over the planning horizon of the General Plan.

Table 6 – Projected Facility Need Based on Service Population Growth

	•	•		-
	Unit	% Change in Demand	Total Facility Need by 2040	Notes
Roadway	Lane Mile	29.6%	1,493.7	Provided for informational purposes, as LOS is the metric used for establishing this need.
Trails	Mile	29.6%	39.8	This metric and/or VMT reduction can be used for establishing this need.
Bike Lane	Mile	29.6%	138.5	This metric and/or VMT reduction can be used for establishing this need.
Sidewalk Facilities	Mile	29.6%	132.2	This metric and/or VMT reduction can be used for establishing this need.

As noted in **Table 6**, roadway improvements are identified based on the City's need to maintain LOS per the City's General Plan policies. Some of the key improvements have been identified to assist with this as noted below (the full list is presented in **Appendix C**):

• Traffic Signals – The fee program includes new traffic signals and improvements for traffic signal communications to improve the efficiency of the traffic signal system. These improvements help with throughput and improve LOS for all corridors they are implemented in.

- Roundabouts For several locations, roundabouts have been identified as the preferred improvements to achieve the City's LOS goals. In many cases, roundabouts reduce crash frequency and crash severity while improving traffic operations to meet the City's LOS targets. This is consistent with General Plan Policy MA-2.3 related to street design where the City implements innovative designs to, "...maximize efficiency and safety in the city.... Possible tools include roundabouts..."
- Etiwanda Grade Separation The proposed grade separation of the railroad tracks at Etiwanda has been planned by the City for years. Additionally, it is identified in General Plan Policy MA-4.5 which states, "Support the construction of grade separations of roadways and trails from rail lines."
 This grade separation is needed to support the continuation of land use growth and associated traffic impacts, especially in the Southeast Industrial Quadrant (SEIQ), to maintain LOS goals in the area. This also will improve goods movement and redundancy in the system such that mobility can be maintained if a train is stuck on the track for some unknown reason at the Etiwanda Grade Separation.

Transportation Project List and Estimated Costs

List of DIF projects and associated cost estimates are provided in **Appendix C.** Project cost estimates are calculated by multiplying the quantity of the planned improvement and the estimated cost per unit of facility expansion. Please note that completion of all identified projects would not lead to a greater ratio of miles or lane miles of facility per person in the City compared to what the City currently provides for its residents.

Table 7 – Development Impact Fee Project Improvements

	Unit	DIF Project List
Roadway	Lane Mile	13.8
Trails	Mile	4.5
Bike Lane	Mile	34.8
Sidewalk Facilities	Mile	1.8

Comparison of the programmed improvements in the DIF project list (**Table 7**) to the "total facility need by 2040" (**Table 6**) demonstrates that the city's planned development is infill in nature and consistent with the goals and policies outlined in the General Plan. Additionally, the new facilities delivered by this fee program meet the requirement for rough proportionality as the number of miles of facility per person being delivered by the fee program is far less than that currently served by the city and its infrastructure for roadways, trails, and sidewalk facilities. The only increase in service levels associated with this program is an increase in planned bike lane miles.

Cost Estimating Assumptions

Cost estimates for transportation improvements are referenced from the latest available and relevant cost records. The cost to construct each unit of improvement is calculated as an average of project costs with

similar scopes and adjusting for forecasted future costs of environmental procedures, engineering design, and contingency. Future updates to the Fee Program should also index costs to an industry standard (typically the Caltrans Construction Contract Cost Index) and adjust the fee schedule annually to ensure that the program maintains consistency with what actual costs are to deliver the program accordingly.

Existing Deficiencies

Existing deficiencies refer to the gaps or inadequacies in current infrastructure or facilities that prevent them from meeting the desired service levels or standards. In the context of capacity-based projects, such as roadway widening, identifying and accounting for existing deficiencies is critical because these projects are often intended to enhance the ability of the infrastructure to accommodate current and future traffic volumes; or, in more simplistic terms, new development cannot pay to fix existing deficiencies.

While future development should not be burdened with addressing existing deficiencies in infrastructure, it is important to recognize that new growth proportionally contributes to the increased demand for expanded or improved facilities. When a new development is proposed, it will increase the existing levels of demand for transportation facilities. Therefore, it is reasonable and equitable to require new development to contribute its fair share towards the costs of infrastructure improvements that are necessitated by this growth.

In the case of roadway widening or other capacity-based projects, while existing deficiencies may have been present before new development, the additional traffic generated by future growth exacerbates these deficiencies and creates a direct need for expansion. Thus, applying impact fees proportional to the new development is justified because the fees are not addressing pre-existing deficiencies, but rather the incremental impact that the new development imposes on the infrastructure system based on the proportion of growth to existing population and infrastructure level of service.

Without new development, the need for such infrastructure improvements would not arise, or would arise at a much later time. Impact fees serve as a mechanism to ensure that new growth is financially responsible for the additional demands it places on public facilities, aligning with the principles and policies of the City of Rancho Cucamonga General Plan, which emphasizes the importance of a fair and proportionate allocation of infrastructure costs.

In simpler terms, this fee program applies two simple tests as it relates to roadway infrastructure needs:

• "But For" Argument – But for new development, the improvement would not be required.

This typically applies to facilities that operate acceptably today but need widening in the future to serve future development. Alternatively, this could be applied to new roadway connections that are required to access new development. In these types of cases, since new development drives 100% of the need for the infrastructure, 100% of the cost of that infrastructure is included in the fee estimate.

• "Fair Share" Argument – For facilities that are currently deficient, new development is only responsible for paying their "fair share" toward the improvement.

In this case, the increased demand by new development is divided by the total future demand on the roadway to identify what that fair share would be.

The expansion of roadways is typically justified by the need to reduce congestion and improve traffic flow, thereby directly responding to the deficiencies in capacity that limit the effectiveness of the existing road network. However, this approach is less applicable to other types of projects, such as multi-modal improvements, which focus on enhancing infrastructure for various modes of transportation – like pedestrian pathways, bicycle lanes, and public transit facilities – rather than increasing capacity for a single mode. Multi-modal improvements are designed to create a more integrated and balanced transportation network, often emphasizing safety, accessibility, and sustainability rather than solely addressing capacity deficiencies. Therefore, while existing deficiencies might drive roadway widening projects, they do not similarly affect the calculations for multi-modal improvements, which are generally aimed at improving the overall quality and functionality of the transportation system (including reducing VMT and GHG) rather than expanding its capacity. **Table 8** details roadways facilities within the DIF projects with operational deficiencies as defined in the General Plan, and the associated share of costs proportional to future developments. All other roadway improvements not described within **Table 8** currently operate at acceptable LOS, and which degrade to unacceptable levels with the inclusion of future development⁶.

For complete streets facilities, there is not specific "existing deficiency" as achieving the city's GHG reduction targets is outlined for the city as a whole. As such, new development can only be responsible for its fair share (as a percentage of total service population) of those improvements. For all the complete streets projects, new development is assumed to be responsible for 29.6% of the project cost which corresponds to the new development as compared to the future population of the city.

⁶ Including the Etiwanda Grade Separation (EGS) project, which will expand the existing 2-lane roadway to 4 lanes (currently operating at a V/C of 0.88 but degrades to a V/C of 1.32 after accounting for growth from future development). Final project cost estimate includes a 40% reduction in anticipation of future grant funding.

Table 8 – Cost Adjustments for Deficient Roadway Facilities⁷

Project ID	Cost Estimate	Existing V/C*	Volume Growth (2024 to 2040)	Future Volume (2040)	Future Share	Adjusted Cost**	Cost Difference***
S 6	\$1,800,000	1.52	11,916	36,940	32.3%	\$580,700	\$1,219,300
S 8	\$292,500	1.04	13,566	47,410	28.6%	\$83,700	\$208,800
S 9	\$1,987,500	1.08	8,926	43,020	20.7%	\$412,400	\$1,575,100
S 10	\$795,000	0.99	2,812	20,810	13.5%	\$107,500	\$687,500
S 11	\$292,500	0.95	2,693	19,930	13.5%	\$39,600	\$252,900
						Subtotal	\$3,943,600

^{*} Rancho Cucamonga has adopted a LOS D (V/C = 0.9) as the standard service standard, with exceptions to roadways and intersections where vehicle travel is not the priority, such as Foothill Blvd (Plan RC MA-2.8). Existing deficiency data obtained from the City of Rancho Cucamonga General Plan prepared by Fehr & Peers in 2019 (excel spreadsheet) and the future roadway needs documented in the City of Rancho Cucamonga General Plan Update Traffic Volumes memo prepared by Fehr & Peers, January 18, 2022.

⁷ Refer to Appendix C – DIF Project List and Project Cost Estimate for description of each project in this table.

^{**} All figures rounded to nearest \$100

^{***} Cost not allowed into the fee program as it is due to existing deficiencies.

Nexus Analysis

Need

The Nexus Analysis, in alignment with the California Mitigation Fee Act, as amended including by AB 602 (2021), must establish a clear and proportional relationship between new development and the demand for public infrastructure. This section focuses on demonstrating the direct link between anticipated growth within the City of Rancho Cucamonga and the necessity for transportation infrastructure improvements. By doing so, it ensures that the City's Development Impact Fees (DIF) comply with the essential nexus and rough proportionality standards mandated by relevant legal precedents such as Nollan v. California Coastal Commission and Dolan v. City of Tigard. Through the use of travel demand modeling⁸ and empirical demographic data, evaluation of the General Plan has also thoroughly demonstrated the causal relationship between new development and transportation impacts.

Rancho Cucamonga's General Plan projects significant growth by 2040, with an anticipated future population of approximately 344,835 residents and 110,948 jobs at buildout **(Table 9)**. Such growth is reasonably expected to elevate the demand for transportation infrastructure, increasing Vehicle Miles Traveled (VMT), and necessitating enhancements to maintain current service levels. The General Plan outlines a vision for a layered circulation network that accommodates various transportation modes

⁸ San Bernardino County Travel Demand Model (SBTAM)

(vehicles, bicycles, pedestrians, and public transit) across the city. To support this vision, strategic investments in infrastructure are essential to prevent congestion and ensure safe, efficient mobility.

Given the projected growth, the City must expand its transportation network proportionally. The General Plan highlights the need for maintaining a LOS D or better for its roadways. Failure to expand infrastructure to meet the additional demands from growth could degrade the service levels of facilities, leading to congestion, safety concerns, and a diminished quality of life for all who rely on the transportation system. Furthermore, this growth exacerbates safety risks by increasing potential conflicts at intersections, pedestrian crossings, and other high-use areas. Consequently, safety improvements – such as intersection enhancements, protected non-motorized facilities, and modernized traffic controls – are essential to maintaining a safe and efficient transportation system while accommodating new development.

As outlined in the General Plan and supported by transportation planning principles, developments generate varying impacts on transportation networks. Therefore, the DIF must differentiate this relationship by aligning fees assessed with the projected impacts of each type of future development.

Table 9 - Land Use Growth

	General Plan Existing Year (2018)	Current Condition (2024) ¹	General Plan Buildout Year (2040)	Change (2024-2040)
Residents	176,274	191,987	233,887	41,980
Single Family Dwelling Units (SFDU)	37,921	38,997	41,865	2,868
Multifamily Dwelling Units (MFDU)	22,874	28,803	44,615	15,812
Employment	89,717	95,507	110,948	15,441
Total Service Population	265,991	287,494	344,835	57,341

¹ 2024 estimate developed by assuming linear growth between the general plan buildout and the existing conditions of the general plan (e.g. linear growth between 2018 and 2040).

Benefits

The transportation infrastructure projects identified in the Nexus Study are essential to support the anticipated growth. These include roadway expansions, intersection improvements, and the development of multimodal transportation options such as bike lanes and pedestrian pathways. Each project is carefully selected to address specific infrastructure needs that will arise from increases in service population and to maintain a consistent and acceptable level of transportation services.

Table 10 – Facility Needs to Maintain Existing Facility Standards

	Unit	Existing (2018) ¹	Total Facility Need by 2040 ²	Implementation of DIF Projects ³	Quantity/1,000 Service Population ⁴	% Change from Existing Standards ⁵
Roadway	Lane Mile	1,152.2	1,493.7	1,166.0	3.38	-21.9%
Trails	Mile	30.7	39.8	35.2	0.10	-11.6%
Bike Lane	Mile	106.8	138.5	141.6	0.41	2.2%
Sidewalk Facilities	Mile	102.0	132.2	103.8	0.30	-21.5%

Notes:

Vehicle Miles Traveled (VMT) is a critical measure of transportation impact, particularly concerning environmental sustainability and public health. VMT is the new CEQA metric required in the State, and it is the primary contributor to GHG emissions in the City. The City of Rancho Cucamonga's General Plan prioritizes the reduction of VMT as a key component of its sustainability goals, aligning with state policies such as those mandated under CEQA and desires to reduce GHG emissions.

Completion of planned projects within the DIF project list will increase the total bike lane mile per capita, while decreasing the same measure of trails, sidewalk, and lane miles of roadway.

Increasing bikeway facilities aligns with the City's objectives to promote active transportation and reduce dependency on automobiles, thus improving air quality and reducing GHG emissions. The General Plan specifically highlights the need to expand low-stress bike infrastructure, such as Class II bike lanes and protected Class IV bikeways, to create a more connected, comfortable, and safe biking environment. The Connect RC Plan similarly emphasizes the role of expanding bikeways in improving access to schools, parks, and transit hubs, providing a viable alternative to car travel for short to medium distances. Enhanced bikeway networks will not only facilitate active transportation but also contribute directly to the City's GHG emission reduction strategy. As such, the increased number of bike-lane miles per capita (compared to the existing condition) is consistent with goals and policies in Plan RC, Connect RC, and the Climate Action Plan.

Reducing roadways per capita aligns with the City's sustainability and greenhouse gas (GHG) reduction goals. Plan RC and Climate Action Plan emphasize a shift towards reducing vehicle miles traveled (VMT) by promoting compact, walkable communities and enhancing active transportation networks. One of the most effective strategies to meet the State's GHG reduction targets is to reduce dependence on automobiles. By decreasing roadway per capita, the City would reduce the number of lanes dedicated to cars and facilitate alternative modes of transportation (which compete for the same existing City-owned right of way).

¹ See Table 2 – Existing Facilities.

² See Table 6 – Projected Facility Need Based on Service Population.

³ Existing plus DIF identified projects.

⁴ Calculation summarizing existing plus DIF projects divided by the service population.

^{5%} change between rate after DIF projects and the existing rate (e.g. what facilities are increasing or decreasing service levels).

Although maintaining trails is crucial for recreation and mobility, most of the City's trail system has already been largely built out. Major facilities such as the Pacific Electric Trail and Cucamonga Creek Trail have already been established and integrated into the City's mobility framework. Thus, a reduction in ratio of trail miles per capita does not reflect a lack of commitment to their benefits but recognizes the completion of the foundational network. The focus within the planning horizon is on maintenance and improving accessibility, safety, and connectivity, rather than expanding trail mileage.

The majority of City's planned developments are expected at infill areas, where existing pedestrian infrastructures are already in place. The General Plan identifies that about 76% of the city streets already have sidewalks, particularly in more developed areas. The City's policies emphasize that future infill development should focus on improving and enhancing existing pedestrian networks rather than constructing new sidewalk infrastructures, where further large-scale sidewalk expansion may not be necessary.

Overall, the changes to the quantity of facilities per capita align with the City's long-term objectives to provide a sustainable, safe, and productive transportation system.

Table 11 – Vehicle Miles Traveled Projections

	Existing (2018)	Linear Projection (2024) ¹	General Plan Buildout (2040)	Growth (2024-2040)	
Total Population	176,274	191,987	233,887	41,900	
Households	60,795	67,063	83,776	16,713	
Employment	89,717	95,507	110,948	15,441	
VMT	9,875,814	10,108,820	10,730,168	621,348	
VMT/Service Population	37.13	35.16	31.12	-6.01	

Note:

The DIF-funded projects are not only designed to accommodate growth but also to manage and reduce VMT. While roadway expansions are necessary to prevent congestion and improve connectivity, they can inadvertently lead to induced travel, where improved traffic flow encourages additional vehicle use. To mitigate the effects of induced travel, the City's strategy includes investments in VMT-reducing projects, such as enhancements to the multimodal transportation network.

The strategic combination of roadway improvements and VMT-reducing projects ensures that the City can accommodate growth and maintain service levels but does not do so at the cost of increased VMT and the associated negative environmental impacts. This balanced approach aligns with the General Plan's goal to reduce overall VMT, thereby supporting the City's commitment to sustainability and enhancing the quality of life for its residents.

¹ 2024 estimate developed by assuming linear growth between the general plan buildout and the existing conditions of the general plan (e.g. linear growth between 2018 and 2040).

Implementation of DIF projects would result in the following changes to Citywide VMT from accounting for increase in roadway lane miles⁹, bike lane miles, and pedestrian network miles. Ultimately, the increase in VMT from expanded infrastructure would be fully offset by the construction of the program's VMT reducing projects with a de minimus overall improvement of citywide VMT of 0.1%.

Table 12 - Effects of DIF Projects on Citywide VMT

	General Plan Buildout (2040)	Percent Change from Buildout
Citywide VMT	10,730,168	
VMT Induced by Capacity Increasing Projects	94,795	0.96%
VMT Reduced by Other DIF Projects	-105,476	-0.98%
Citywide VMT with DIF Implementation	10,719,486	
Net Change in Citywide VMT with DIF Implementation	-10,682	-0.1%

Cost Allocation

AB 602 mandates that development impact fees for residential units be calculated based on square footage rather than the traditional per-unit metric unless a local agency makes the finding that includes an explanation of why such a metric is not appropriate, that an alternative basis of calculation is reasonably related, and that other policies in the fee structure supports smaller developments.

The principle of proportionality underlies the requirement that fees imposed on new developments must be proportionate to the impact those developments have on public facilities. For single-family residential units, a correlation exists between the size of the dwelling and its impact on transportation and other infrastructure. Larger homes typically house more residents, generate more vehicle trips, and thus have a greater impact on local infrastructure. Meanwhile, the correlation between multifamily units and increased transportation demand has been found to be associated more closely with the number of units, rather than the size of each unit 10 based on recent studies completed in the Inland Empire.

Although a case can be made to charge multifamily housing using a per unit fee consistent with other research completed in the Inland Empire, to adhere to the proportionality basis mandated by AB 602, calculation for fees assessed by land use category should differentiate the methodologies for single-family and multifamily residential units and the fee should be normalized to reflect sq. ft. of the unit.

To accomplish all of this, and to crosswalk general plan land use designations from households into trip generation and sq. ft. estimates, Fehr & Peers normalized the proposed land use and the impact fee into a term known as Equivalent Dwelling Unit (EDU). Correlating an EDU to the average single-family home,

⁹ https://travelcalculator.ncst.ucdavis.edu/

¹⁰ WRCOG Residential Trip Generation Study (2023)

then converting trips into EDU helps establish the impact fee schedule based on units of measurement for estimating trip generation in the Institute of Transportation Engineers' (ITE) *Trip Generation Manual*. This is especially important as it helps with converting General Plan growth into trips that can be used in the fee calculation. For example, the General Plan identifies employment for non-residential uses (and utilizes a standard conversion for employees to sq. ft.), but the inputs for residential uses are number of households. As such, using the EDU as a representation for households assists with identifying the fee tied to other land uses described within the DIF program.

According to building permit records provided by the city, the average size of single-family residential (SFR) development projects is roughly 2,500 square feet. For SFR units, a ratio of the proposed development compared to the average size identified (2,500 for Detached units, 1,700 for Attached units and for Multifamily units) should be applied in calculation of fees to be assessed. To be consistent with AB 602 requirements, we have utilized the average unit size identified above to calculate the fee per dwelling unit equivalent, then proportionally developed a per square foot cost to be charged for new development.

Table 13 – Equivalent Dwelling Unit (EDU) and Cost per Square Foot Estimates

Table 15 Equitalent 2 Herming Cliff (120) and Cost per square 1 oct 25timates						
Land Use	Unit	Daily Trip Rate	Pass-By Reduction	Equivalent Dwelling Unit (EDU)	Average Size of Dwelling Units (SF) **	
Single Family - Detached	DU	9.43	-	1.0	2,500	
Single Family - Attached	DU	7.2	-	0.8	1,700	
Multifamily - Attached (Low-Rise)	DU	6.74	-	0.7	1 700	
Multifamily - Attached (Mid-Rise)	DU	4.54	-	0.5	1,700	
Senior Housing	Bed	4.31	-	0.5	-	
Nursing/Congregate Care	Bed	2.21	-	0.2	-	
Commercial/Retail*	KSF	37.01	-30%	2.7*	-	
Office/Business Park	KSF	10.84	-	1.1	_	
Industrial	KSF	4.87	-	0.5	-	
Warehouse	KSF	6.44	-	0.7	-	
Hotel/Motel	Room	7.99	-	0.8	-	
Elementary School	Stu	2.27	-	0.2	-	
Day Care	Stu	4.09	-	0.4	-	
Self-Storage	KSF	1.45	-	0.2	_	
Service Station*	Pump	172.01	-30%	12.8*	-	

^{* 30%} average reduction applied to retail and service station uses to account for likelihood of pass-by and divert trips

^{**} City of Rancho Cucamonga (2024).

Total Program Costs

Total costs of the DIF program are calculated by the following steps, each ensuring that the fees collected are appropriately aligned with the costs incurred by new development impacts.

- 1. **Identify Total Costs of Transportation Improvements.** The total cost of expansion and improvement projects is \$379,485,000 as provided in **Appendix C**.
- 2. Account for Known Funding (Balance) and Fee Credits (Obligations). The balance remaining in the current DIF program is \$64,000,000¹¹. This balance is subtracted from the estimated costs to complete improvement projects and to account for unspent dollars towards future projects. Improvement reimbursement programs allow developers to recover costs for constructing public infrastructure that exceeds the immediate needs of their project and benefits the broader community. Such reimbursement programs typically involve formal reimbursement agreements which the City would be obligated to fulfill, outstanding obligations should be accounted for and subtracted from the remaining balance. At the time of this Study, there are no known reimbursement obligations.
- 3. **Account for Existing Deficiencies.** All facilities where capacity-related improvement projects are identified are first evaluated to determine if they adequately serve the City's current service population. Where the level of service is below acceptable standards (LOS D per the City's General Plan), only a proportional amount of the total project costs is to be funded by future development. Deductions to account for existing deficiencies are in the amount of **\$3,943,600**.

The table below describes the total program cost.

¹¹ DIF Fund Balance as of June 2024

Table 14 – DIF Program Cost Total

Program Element	Total Cost
DIF Program Project Contributions (Appendix C)	\$379,485,000
DIF Account Balance (June 2024)	- \$64,000,000
Adjustments for Existing Deficiencies (Table 8)	- \$3,943,600
Program Total	\$311,541,400

Maximum Fee Calculation¹²

What is the maximum justified fee by land use type based on the prior steps that can be charged to new development, with the fee on residential land use levied per building square foot unless an alternative method is justified?

Per the evaluation of travel demand forecasts during the development of the City's General Plan, future development generate a total of 183,433 new daily trips. **Table 15** demonstrates (for informational purposes only) the estimated cost per trip, and per EDU, without the zone approach.

[•] The housing development provides either the minimum number of parking spaces required by the local ordinance, or no more than one onsite parking space for zero-to-two-bedroom units, and two onsite parking spaces for three or more-bedroom units, whichever is less.

26

¹² Government Code §§ 66005.1 (a) – If housing development satisfies all of the following characteristics, then a transportation fee, or the portion of the fee relating to vehicular traffic impacts, must be set at a rate that reflects a lower rate of automobile trip generation associated with such housing developments in comparison to housing developments without these characteristics, unless the local agency adopts specific findings:

[•] The housing development is located within one-half mile of a transit station and there is direct access between the housing development and the transit station along a barrier-free walkable pathway not exceeding one-half mile in length.

[•] Convenience retail uses, including a store that sells food, are located within one-half mile of the housing development.

Table 15 - Cost per Trip Citywide

(for comparative review only)

	Costs
Total New Trips	183,433
Total Program cost	\$311,541,400
Cost per Trip	\$1,698
Cost per EDU*	\$16,016

^{*} Provided for the City as a whole for comparative purposes. Since the cost per EDU is dependent on the zone the project is in, it changes per zone.

Applying the band zonal approach to the identified improvements and accounting for the interaction of trips between those zones (**Table 4**), this study identifies the total costs for projects within each zone and the total project cost burden as shown in **Table 16** below:

Table 16 – Total Cost of Improvements By Zone

Sub-area	Ducinet and	Contributions				
	Project costs	North	Central	South		
North	\$27,667,256	\$20,673,259	\$4,398,167	\$2,595,830		
Central	\$79,343,126	\$5,418,563	\$62,209,186	\$11,715,376		
South	\$268,530,396	\$12,467,852	\$48,029,263	\$208,033,281		

Applying the zone-specific contributions to the estimated development potential (total new trips) within the respective zones results in the following costs per trip and per EDU associated with this impact fee program (**Table 17**):

Table 17 - Cost per Trip and Cost per EDU

Sub-area ID	Total New Trips	Total Contributions	Cost per Trip	Cost per EDU	- DIF Balance
North	25,034	\$38,559,674	\$1,540	\$14,525	\$11,235
Central	51,314	\$114,636,616	\$2,234	\$21,067	\$17,777
South	107,085	\$222,344,487	\$2,076	\$19,580	\$16,290

Applying the estimated cost per EDU to each land use category, a maximum fee per unit of land use is calculated. Please note that per AB 602 requirements and assessments within this Study, impact fees for proposed Single-Family Residential projects should be assessed by size (square feet), adjusted by their relationship to the average size of Single-Family Residential units.

City of Rancho Cucamonga Transportation Development Impact Fee Program Nexus Study

Developments near quality transit generally produce fewer vehicle trips due to the availability of transit options, which encourages a shift away from car usage. As such, AB 2533 was passed which requires lower impact fees to be assessed in areas where development is close to high quality transit. This bill was codified in Government Code section 66005.1.

Consistent with this requirement, multifamily development (Close to Rail) rates from the ITE Trip Generation Manual (11th Edition) were utilized to estimate the reductions appropriate for development meeting the requirements of the legislation. Please note that, by using ITE rates to develop this adjustment, low-rise multifamily units near high quality transit see a fee reduction of approximately 30% compared to the same development that is not near high quality transit. However, for mid-rise multifamily units, ITE rates show an increase in vehicle trip making for development near transit. To simplify the fee program, the same 30% reduction shown for the low-rise multifamily trip rates was also applied to the mid-rise multifamily land use.

Table 18 – Maximum Fee Calculation

Land Use	Unit	EDU	Maximum Fee Per Land Use Category by Zor		
			North Zone	Central Zone	South Zone
Single Family –	DU – 2,500 SF (100%)	1.00	\$11,235	\$17,777	\$16,290
Detached*	Sq. Ft. (to be used for fee col	lection)	\$4.49	\$7.11	\$6.52
Single Family –	DU – 1,700 SF (100%)	0.76	\$8,578	\$13,573	\$12,437
Attached*	Sq. Ft. (to be used for fee col	lection)	\$5.05	\$7.98	\$7.32
	DU – 1,700 SF (100%)	0.71	\$8,030	\$12,706	\$11,643
Multifamily – (Low-Rise)	Sq. Ft. (to be used for fee collection)		\$4.72	\$7.47	\$6.85
(2011 11100)	If located in a high-quality transit	area**	\$3.31	\$5.23	\$4.79
	DU – 1,700 SF (100%)	0.48	\$5,409	\$8,558	\$7,843
Multifamily – (Mid-Rise)	Sq. Ft. (to be used for fee collection)		\$3.18	\$5.03	\$4.61
(**************************************	If located in a high-quality transit area**		\$2.23	\$3.52	\$3.23
Senior Housing	Bed	0.46	\$5,135	\$8,125	\$7,445
Nursing/ Congregate Care	Bed	0.23	\$2,633	\$4,166	\$3,818
Commercial/Retail**	KSF	2.75	\$21,606	\$34,186	\$31,327
Office/Business Park	KSF	1.15	\$12,915	\$20,435	\$18,725
Industrial	KSF	0.52	\$5,802	\$9,181	\$8,413
Warehouse	KSF	0.68	\$7,672	\$12,140	\$11,125
Hotel/Motel	Room	0.85	\$9,519	\$15,062	\$13,802
Elementary School	Stu	0.24	\$2,704	\$4,279	\$3,921
Day Care	Stu	0.43	\$4,873	\$7,710	\$7,065
Self-Storage	KSF	0.15	\$1,728	\$2,733	\$2,505
Service Station**	Pump	12.77	\$100,415	\$158,887	\$145,596

^{*} For Single Family Residential Units (Detached or Attached), proposed square footage of projects above or below the average size (2,500 square feet for detached, 1,700 square feet for attached and multi-family), shall be responsible for a proportional increase or decrease to the impact fees assessed. (See table and examples for application of fees in the following sections)

^{**} See text description related to 30% reduction for land use in a high-quality transit area that was derived using ITE rates for low-rise multifamily units away from and proximate to transit. Same reduction applied to service station and commercial/retail categories to account for pass-by trips.

Fee Implementation

Steps to Calculate Transportation Impact Fees

Step 1 – Determine Project Description and Land Use Quantities

In this step, the development project is clearly defined by identifying the land use type and its scale. The description should include:

Project type: Residential (single-family or multi-family), commercial, industrial, or mixed-use.

Land use categories: For example, residential units (number and size of Single-Family Units, Multifamily Units, etc.), office space (square feet), or retail space (square feet).

Project size: Specify the quantity in units of the chosen land use category. For residential projects, this will be the number and size of dwelling units (DU). For non-residential projects, this could be square feet (KSF) of office or retail space, or other relevant measures.

Step 2 – Apply Transportation Impact Fees

Once the land use quantities are identified, the next step is to apply the appropriate transportation impact fee rates.

Locate the fee schedule: Use the pre-determined transportation impact fee schedule **(Table 18)** that outlines the fee rates for different land use categories, such as single-family residential, multifamily, commercial, or industrial.

Calculate the total fee: Multiply the number of proposed quantities of land use by the corresponding transportation impact fee rate.

Example Calculation

Step 1 - Determine Project Description and Land Use Quantities

Example: A proposed development includes 100 single-family detached homes averaging 2,000 sq. ft. (200,000 sq. ft.) and 40,000 square feet of office space in the North Zone.

Step 2 – Apply Transportation Impact Fees

Example: If the fee for a single-family detached home is \$4.49 per sq. ft., the fee for 200,000 sq. ft. would be:

$$200,000 \text{ sq. ft.} \times \$4.49/\text{sq. ft.} = \$898,777.93$$

Example: If the fee for office space is \$12,915 per 1,000 square feet, the fee for 40,000 square feet of office space would be:

Summing up the total fees: After calculating the fees for each land use type, the total transportation impact fee for the project is obtained by adding the individual fees, or \$1,415,360.79.

Program Administration

This section outlines the procedures for administering and reporting on the City of Rancho Cucamonga's Transportation Impact Fee (DIF) program. It includes guidelines for program administration, updates, regular reporting, and how to address land uses that are not explicitly described within the land use categories of the fee structure. The requirements and procedures for refunds and filing of grievances in settling disputes regarding fee assessment are also detailed.

Program Administration

The City will be responsible for the overall administration and ongoing management of the DIF program. This involves maintaining accurate records of fee collection, project funding, and program adjustments.

Key Administrative Responsibilities:

- Fee Collection: Ensure that all development projects subject to the DIF program pay the appropriate fees based on the approved fee schedule.
- Fund Allocation: Manage and allocate collected fees toward transportation infrastructure improvements that are directly related to growth.

• Monitoring and Adjustments: Regularly monitor the need for fee adjustments, including indexing fees to account for inflation or changes in construction costs.

To maintain the program's financial sustainability and relevance, the City will apply an annual adjustment to the DIF, reflecting changes in construction costs. Adjustments should be based on an established construction cost index, such as the California Department of Transportation's (Caltrans) Construction Contract Cost Index, to ensure fees align with current market conditions.

Program Update

In compliance with AB 602, the City of Rancho Cucamonga's Transportation Impact Fee Program requires periodic updates and reviews to ensure its alignment with current development patterns, infrastructure needs, and legal standards.

- Review the Fee Program every five (5) years per Government Code §§ 66001.
- Update the Nexus Study every eight (8) years per AB 602
- Update the Fee Program and/or Nexus Study if there are any other substantial changes/updates to the Mitigation Fee Act
- Update the Fee Program and/or Nexus Study due to major changes in the policies/assumptions due to a General Plan Update or other citywide planning effort.
- Update the Fee Program and/or Nexus Study if the City changes its development impact criteria.
- Update the Fee Program and/or Nexus Study if the construction costs change significantly.
- Annually update the Fee Program to reflect inflation and other factors that affect the costs of projects in the fee program.

The City must adopt or update a Capital Improvement Plan (CIP) as part of the Nexus Study. The CIP outlines the infrastructure projects that will be funded by the collected impact fees, ensuring transparency and planning consistency. The City of Rancho Cucamonga publishes the Capital Improvement Program as part of the annual budgeting procedures, and the latest available information can be found on the City's website under the Financial Reports section.¹³ Further the City has prepared an amendment to the Major Project Program (which includes the Capital Improvement Program) which will be considered for approval as part of the DIF Program update. A copy of the Major Project Program amendment is available under separate cover.

Program Reporting

Government Code §§ 65940.1 requires that the City maintains the following items (and posts on their website):

A current schedule of fees, exactions, and affordability requirements imposed by the DIF.

_

¹³ https://www.cityofrc.us/your-government/budget

- All zoning ordinances and development standards adopted by the City showing the information, which shall specify the zoning, design, and development standards that apply to each parcel.
- A list that specifies the information that will be required from any applicant for a development project.
- The current and five previous annual fee reports or the current and five previous annual financial reports, fee nexus studies, cost of service studies, or equivalent, conducted by that City, on or after January 1, 2018.

Unique Land Use Categories

In cases where a proposed development does not fit neatly into the predefined land use categories within the DIF program, the City will apply a methodology that ensures the fee is proportional to the anticipated impact of the development on transportation infrastructure.

Impact Assessment: For new or uncommon land uses, the project must submit a traffic impact assessment to determine the projected vehicle trips, or other relevant metrics (e.g., Vehicle Miles Traveled, VMT), generated by the proposed development.

Trip Generation Data: The City will reference the most recent edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual to estimate the transportation demand of the new land use. If no specific trip generation data is available for the proposed land use, the City will use a comparable category from the manual as a proxy.

Custom Fee Calculation: Once the anticipated transportation demand is assessed, the City will calculate a custom fee based on the closest comparable land use category in the DIF schedule, adjusted for any unique characteristics of the development.

Refund Provisions

Under California Government Code §§ 66001(d) and (e), the City of Rancho Cucamonga must refund any unexpended development impact fees, along with accrued interest, if not used or committed within five years of collection. Refunds are issued to the current record owners on a pro-rata basis, determined using the last equalized assessment roll. If administrative costs of processing the refund exceed the refund amount, the City may, after a public hearing, allocate the funds to a related public improvement serving the original development. Additionally, the City must make specific findings every five years regarding the purpose, relationship, and anticipated use of unspent fees, ensuring transparency and accountability in fee management.

Grievances

California Government Code §§ 66000-66025 requires legal avenues that are available to contest the fees associated with this update. This is further described in the city's Municipal Code section 3.28.050 which states that, "A developer of any project subject to the fee described in section 3.28.020 [city-wide transportation development fees] may apply to the city council for a reduction or adjustment to that fee,

City of Rancho Cucamonga Transportation Development Impact Fee Program Nexus Study

or a waiver of that fee, based upon the absence of any reasonable relationship or nexus between the traffic impacts of that development and either the amount or the fee charged or the type of facilities to be financed." This avenue is open to anyone disputing the transportation impact fee and generally would be facilitated by the following key considerations that are required by the Government Code:

Fee Challenges and Protest Procedures

Under Government Code § 66020, developers or property owners who disagree with the amount or validity of an imposed fee must follow a specific protest procedure. To preserve their right to challenge the fee:

- The developer must submit a written notice of protest to the City at the time of fee payment or within 90 days after the fee imposition.
- The protest must clearly outline the grounds for dispute, such as the lack of nexus between the fee and the development's impact or disagreement with the fee calculation method.

Failure to file a protest within this period waives the right to legally challenge the fee in the future. This is consistent with the Municipal Code as noted above.

Public Hearing for Disputes

If the dispute is not resolved at the local level, the developer has the right to seek judicial review. To initiate this process:

- A lawsuit challenging the fee must be filed within 180 days of the fee being imposed or from the final decision issued by the City after the grievance process.
- Judicial review focuses on whether the fee complies with the Mitigation Fee Act, particularly the
 essential nexus and rough proportionality tests established in case law (e.g., Nollan v. California
 Coastal Commission and Dolan v. City of Tigard).

Appendices

Appendix A – Resolution No. 20-122

RESOLUTION NO. 2020-122

A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF RANCHO CUCAMONGA, CALIFORNIA, AMENDING RESOLUTION NO. 2020-005, REVISING CITYWIDE TRANSPORTATION DEVELOPMENT IMPACT FEES (DIF) FOR ALL DEVELOPMENTS WITHIN THE CITY OF RANCHO CUCAMONGA, AND MAKING FINDINGS IN SUPPORT THEREOF

A. RECITALS:

- 1. On April 18, 1991, the City Council of the City of Rancho Cucamonga adopted Ordinance No. 445 creating and establishing the authority for imposing and charging city-wide transportation development fees.
- 2. On February 19, 2020, the City Council of the City of Rancho Cucamonga adopted, Resolution No. 2020-005, establishing city-wide transportation fees as authorized by Ordinance No. 445.
- 3. The Engineering Services Department is responsible for reviewing the continued need for described capital improvements and revising the cost estimates and fees when appropriate.
- 4. The San Bernardino County Transportation Authority (SBCTA) requires that project costs and fees, including Transportation Development Fees (DIF), be updated biennially.
- 5. The increase for this year is calculated at 4.4%; this is based on the California Department of Transportation (CalTrans) Price Index for Construction Items, from 4th Quarter 2019 to 3rd Quarter 2020. The overall effective increase will be 4.45%, which includes the administration fee to manage the DIF program.
- 6. On December 2, 2020, the City Council of the City of Rancho Cucamonga conducted a duly noticed public hearing concerning the fee revision adopted herein. The revised cost estimates and fee calculations applicable to the fee revision were available for public inspection and review ten (10) days prior to this public hearing.
 - 7. All legal prerequisites to the adoption of this Resolution have occurred.

B. **RESOLUTION:**

NOW, THEREFORE, THE CITY COUNCIL OF THE CITY OF RANCHO CUCAMONGA, HEREBY RESOLVES,

- 1. The facts set forth in the Recitals, above, are true and correct.
- 2. The City of Rancho Cucamonga hereby finds as follows:
- a. The purpose of the fee revision is to finance transportation improvements needed to mitigate the impacts of traffic generated by new development; and

- b. The fees collected pursuant to this Resolution shall be used to finance only the public facilities described or identified in Exhibit "A", attached hereto; and
- c. The construction of the described or identified public facilities is consistent with the Circulation Element of the City's General Plan; and
- d. There is a reasonable relationship between the need for the described public facilities, and the mitigation of traffic impacts associated with new development; and
- e. There is a reasonable relationship between the amount of the fee shown in Exhibit "B", and the type of development for which the fee is charged; and
- f. The cost estimates set forth in Exhibit "A" are reasonable cost estimates for constructing these facilities, and the transportation development fees expected to be generated by new development will not exceed the total of these costs.

3. **DEFINITIONS**:

- 1. "Development projects" shall mean construction of residential, commercial, industrial, office, or other non-residential improvements, or the addition of floor space to existing improvements. A "development project" includes any project involving the issuance of a building permit for construction or reconstruction.
- 2. "Exempted development" shall mean a floor space addition to an existing residential building, and the following types of uses: public schools, colleges, libraries, churches, parks, county jail, or sports complex.
- 3. "Equivalent dwelling unit" or "EDU", is used to convert all types of land uses into an equivalent unit that enables Nexus fees to be tabulated as dollars per EDU. One residential single family detached housing is equal to one EDU.
- 4. Payment of Fee: The revised Transportation Development Fee shall be paid per Chapter 3.28 City-Wide System Fee for Transportation Development subsection 3.28.020 Fees established of the RCMC. The City Engineer, or their designee, shall calculate and determine the amount of the fee based upon the rate then in effect at the time of payment.
- 5. <u>Fee Schedule:</u> The amount of the revised Transportation Development Fee was determined to be \$12,708 per EDU. The calculations used to make this determination are shown in the attached Exhibit "C".
- 6. <u>EDU/Land Use Equivalent Schedule:</u> The calculation of EDU for each land use is based on the trip generation rates shown in the ITE Trip Generation Manual, 5th Edition. The EDU for each identified land use type is as follows:

Land Use Type	EDU
Residential - Single Family Detached Unit	1.0 EDU
Residential - Multiple Family Attached Unit	0.6 EDU
Apartment or Condominium - Attached Unit	0.6 EDU

Senior Housing Attached Unit (Condo or Apartment) – Per Bedroom	0.2 EDU
Nursing / Congregate Care - Per Bed	0.2 EDU
Commercial - Per 1,000 Square Feet	1.5 EDU
Office / Business Park - Per 1,000 Square Feet	1.2 EDU
Industrial - Per 1,000 Square Feet	0.6 EDU
Warehouse - Per 1,000 Square Feet	0.5 EDU
Hotel / Motel - Per Room	0.8 EDU
Day Care - Per Student	0.25 EDU
Self-Storage - Per Unit	0.02 EDU
Service Station - Per Pump	5.0 EDU

- 7. <u>Use of Fee:</u> The Transportation Development Fee shall be solely used to pay for the public facilities described in Exhibit "A", or for reimbursing the City for development's fair share of those capital improvements already constructed by the City, or to reimburse other developers who have constructed public facilities described in Exhibit "A".
- 8. Administration Fee: The City shall include an Administration Fee in the amount of 15% of the total project cost for the management of the Transportation Fee Program.
- 9. <u>Fee Review:</u> The Engineering Services Department shall review the estimated cost of the described capital improvements, the continued need for these improvements, and the reasonable relationship between such need and the traffic impacts for the various types of development pending or anticipated and for which the fee is charged. The City Engineer shall report the findings to the City Council at a noticed public hearing, and recommend any adjustment to this fee or other action as may be needed.
- 10. **Effective Date:** This Resolution shall take effect upon adoption, provided that the fees as herein amended shall not be imposed by the City until 60 days from the date of the public hearing.
- 11. <u>Judicial Challenge:</u> Any judicial action proceeding to appeal, review, set aside, void, or annul this resolution shall be brought within 120 days of its adoption.
 - 12. **Certification:** The City Clerk shall certify the adoption of this Resolution.

PASSED, APPROVED, and ADOPTED this 2nd day of December 2020.

	Dur Makel
	L. Derinis Michael, Mayor
ATTEST:	
Janice C. Reynolds, City Clerk	<u>0</u>
STATE OF CALIFORNIA)	
COUNTY OF SAN BERNARDINO)	ss
CITY OF RANCHO CUCAMONGA)	
that the foregoing Resolution was duly	rk of the City of Rancho Cucamonga, do hereby certify passed, approved, and adopted by the City Council of Regular Meeting of said Council held on the 2 nd day of

AYES:

Hutchison, Kennedy, Michael, Scott, Spagnolo

NOES:

None

ABSENT:

None

ABSTAINED: None

Executed this 3rd day of December, 2020, at Rancho Cucamonga, California.

Exhibit "A" Transportation Fee Program Projects & Project Costs

Freeway Interchanges

	Project	Estimate
F1	Base Line Road at I-15 Freeway - Widen NB & SB On-Ramps	\$987,800
F2	Foothill Boulevard at I-15 Freeway - Widen NB & SB On-Ramps	\$1,532,353
F3	Base Line Road at I-15 Freeway - Interchange Improvements	\$22,866,732
F4	Arrow Route at I-15 Freeway - Interchange	\$56,995,197
F5	Grove Avenue / 4th Street at I-10 Freeway - Interchange Improvements	\$6,240,350
	Total:	\$88,622,432

Railroad Grade Separations and Crossings

	Project	Estimate
R1	Haven Avenue at Metrolink Crossing - Grade Separation	\$15,032,310
R2	6th Street W/O Lucas Ranch Road - Improve RXR Crossing Gates	\$1,220,335
R3	6th Street E/O Santa Anita Avenue - Install new RXR Crossing Gates	\$1,220,335
R4	Hellman Avenue at 8th Street - Upgrade Existing RXR Crossing Gates	\$1,974,552
	Total:	\$19,447,532

Bridges

	Project	Estimate
B1	6th Street at Cucamonga Creek Channel - Widen Existing Bridge	\$2,842,826
B2	9th Street at Cucamonga Creek Channel - Widen Existing Bridge	\$1,347,916
В3	Arrow Route at Etiwanda Ditch - Widen Existing Bridge	\$1,322,954
B4	Banyan Street at Etiwanda Creek Channel - Bridge	\$1,506,004
B5	Hellman Avenue at Cucamonga Creek Channel - Widen Existing Bridge	\$8,601,976
B6	Whitram Avenue at Etiwanda Ditch - Bridge	\$1,658,546
В7	Wilson Avenue at Day Creek Channel - Bridge	\$1,707,082
B8	Wilson Avenue at Etiwanda Creek Channel - Bridge	\$2,874,721
	Total:	\$21,862,026

Streets

	Project	Estimate
S1	6th Street - Santa Anta Avenue to Etiwanda Avenue - Backbone	\$923,572
S2	Arrow Route - Grove Avenue to Baker Avenue - Widen 2 to 4 Lanes	\$1,867,945
S3	Arrow Route - 500' E/O I-15 Freeway to 1,300' E/O I-15 Freeway - Widen South Side	\$1,550,380
S4	Banyan Street - Etiwanda Avenue to East Avenue - Widen North Side	\$1,368,717
S5	Banyan Street - East Avenue to Wardman Bullock Road - New Alignment	\$11,286,713
S6	Base Line Road - Etiwanda Avenue to I-15 Freeway - Widen North Side 2 to 3 Lanes	\$1,363,170
S7	Cherry Avenue - Wilson Avenue to I-15 Freeway - Widen West Side	\$1,651,613
S8	Church Street - Archibald Avenue to Haven Avenue - Widen 2 to 4 Lanes	\$1,769,486
S9	East Avenue - I-15 to Victoria Street - Various Bottlenecks	\$1,131,583
S10	East Avenue - Fire Station to Wilson - New	\$1,795,834
S11	East Avenue - Wilson Avenue to North Rim Way - New	\$607,394
S12	Etiwanda Avenue - 6th Street to Arrow Route - Widen 2 to 4 Lanes	\$5,720,321
S13	Etiwanda Avenue - Miller Avenue to 850' N/O Miller Avenue - Widen East Side	\$391,062
S14	Etiwanda Avenue - Banyan Street to Wilson Avenue - Curb and Gutter East Side Only	\$1,288,286
S15	Etiwanda Avenue - Existing Northern Terminus to North Rim Way - New	\$728,041
S16	Foothill Boulevard - Vineyard Avenue to Hellman Avenue - Widen 4 to 6 Lanes	\$1,669,640
S17	Foothill Boulevard - Hellman Avenue to 700' E/O Hellman Avenue - Widen North Side Only	\$2,676,417
S18	Foothill Boulevard at Archibald Avenue - Widen Intersection	\$10,046,964
S19	Foothill Boulevard - Archibald Avenue to Hermosa Avenue - Widen 4 to 6 Lanes	\$2,716,632
S20	Grove Avenue - 8th Street to Tapia Via - Widen 1 to 2 Lanes East Side Only	\$1,489,364
S21	Grove Avenue - San Bernardino Road to Foothill Boulevard - Widen 1 to 2 Lanes East Side Only	\$916,638
S22	Haven Avenue - Base Line Road to I-210 Freeway - Widen West Side Only	\$17,109,653
S23	Lower Crest Road - Day Creek Etiwanda Avenue to East Avenue - New	\$2,227,112
S24	Miller Avenue - Etiwanda Avenue to East Avenue - Widen 2 to 4 Lanes	\$3,364,242
S25	Milliken Avenue - 5th Street to 700' S/O 5th Street - Widen West Side Only	\$422,957

S26	Victoria Street - East Property Line of Etiwanda High School to I-15 Freeway - Improve Both Shoulders	\$407,703
S27	Vintage Drive - Etiwanda Avenue to 1,300' W/O Etiwanda Avenue - New	\$1,192,600
S28	Wilson Avenue - Milliken Avenue to Day Creek Boulevard - New	\$9,463,144
S29	Wilson Avenue - Etiwanda Avenue to East Avenue - Backbone Only	\$783,511
S30	Wilson Avenue - East Avenue to Wardman Bullock Road - New	\$8,320,467
S31	Youngs Canyon - Cherry Avenue to Wardman Bullock - New	\$13,035,398
	Total:	\$109,286,556

Traffic Signals

	Project ^{8,9}	Estimate
T1	4th Street at Richmond Place	\$485,361
T2	4th Street at Utica Avenue	\$485,361
ТЗ	6th Street at Buffalo Avenue	\$485,361
T4	6th Street at Cleveland Avenue	\$485,361
T5	6th Street at Etiwanda Avenue	\$485,361
T6	6th Street at Hellman Avenue	\$485,361
T7	6th Street at Pittsburgh Avenue	\$485,361
T8	6th Street at Rochester Avenue	\$485,361
Т9	6th Street at Santa Anita Avenue	\$485,361
T10	6th Street at Utica Avenue	\$485,361
T11	Archibald Avenue at Banyan Street	\$485,361
T12	Archibald Avenue at San Bernardino Road	\$485,361
T13	Archibald Avenue at Victoria Street	\$485,361
T14	Archibald Avenue at Wilson Avenue	\$485,361
T15	Arrow Route at Center Avenue	\$485,361
T16	Banyan Street at Rochester Avenue	\$485,361
T17	Banyan Street at Wardman Bullock Road	\$485,361
T18	Base Line Road at San Carmela Court	\$485,361
T19	Base Line Road at Shelby Place	\$485,361
T20	Carnelian Street at Banyan Street	\$485,361
T21	Carnelian Street at Wilson Avenue	\$485,361
T22	Cherry Avenue at Youngs Canyon Road	\$485,361
T23	Church Street at Elm Avenue (West)	\$485,361
T24	Church Street at Mayten Avenue	\$485,361

T25	Church Street at Ramona Avenue	\$485,361
T26	Church Street at Terra Vista Parkway	\$485,361
T27	Civic Center Drive at Red Oak Street	\$485,361
T28	Ridgeline Place at Wilson Avenue	\$485,361
T29	Day Creek Boulevard at Madrigal Place	\$485,361
T30	Day Creek Boulevard at Wilson Avenue	\$485,361
T31	East Avenue at Miller Avenue	\$485,361
T32	East Avenue at Highland Avenue	\$485,361
T33	Etiwanda Avenue at Garcia Drive	\$485,361
T34	Etiwanda Avenue at Whittram Avenue	\$485,361
T35	Foothill Boulevard at Cornwall Court	\$485,361
T36	Foothill Boulevard at East Avenue	\$485,361
T37	Foothill Boulevard at Malachite Avenue	\$485,361
T38	Haven Avenue at Trademark Street	\$485,361
T39	Haven Avenue at Valencia Avenue	\$485,361
T40	Haven Avenue at Wilson Avenue	\$485,361
T41	Hellman Avenue at 8th Street	\$485,361
T42	Hermosa Avenue at Church Street	\$485,361
T43	Milliken Avenue at 5th Street	\$485,361
T44	Milliken Avenue at Wilson Avenue	\$485,361
T45	Rochester Avenue at Jersey Boulevard	\$485,361
T46	Spruce Avenue at Elm Avenue	\$485,361
T47	Spruce Avenue at Mountain View Drive	\$485,361
T48	Spruce Avenue at Red Oak Street	\$485,361
T49	Terra Vista Parkway at Spruce Avenue	\$485,361
T50	Terra Vista Parkway at Town Center Drive	\$485,361
T51	Town Center Drive at Elm Avenue	\$485,361
T52	Wilson Avenue at East Avenue	\$485,361
T53	Wilson Avenue at Etiwanda Avenue	\$485,361
T54	Wilson Avenue at Etiwanda Avenue (West)	\$485,361
T55	Wilson Avenue at San Sevaine Road	\$485,361
T56	Wilson Avenue at Wardman Bullock Road	\$485,361
T57	Wilson Avenue at Canistel Avenue	\$485,361
T58	4th Street at Golden Lock Road - Left Turn Phasing Upgrade	\$34,669
T59	Archibald Avenue at Banyan Street - Left Turn Phasing Upgrade	\$34,669

T60	Arrow Route at Etiwanda Avenue - Left Turn Phasing Upgrade	\$69,337
T61	Arrow Route at Red Oak Street - Left Turn Phasing Upgrade	\$34,669
T62	Arrow Route at White Oak Street - Left Turn Phasing Upgrade	\$34,669
T63	Banyan Street at East Avenue - Left Turn Phasing Upgrade	\$34,669
T64	Base Line Road at Mountain View Drive - Left Turn Phasing Upgrade	\$34,669
T65	Base Line Road at Spruce Avenue - Left Turn Phasing Upgrade	\$34,669
T66	Base Line Road at Valencia Avenue - Left Turn Phasing Upgrade	\$34,669
T67	Day Creek Boulevard at Silverberry Street - Left Turn Phasing Upgrade	\$34,669
T68	Day Creek Boulevard at Sugar Gum Street - Left Turn Phasing Upgrade	\$34,669
T69	Day Creek Boulevard at Victoria Park Lane - Left Turn Phasing Upgrade	\$34,669
T70	Milliken Avenue at Millenium Court - Left Turn Phasing Upgrade	\$34,669
T71	Milliken Avenue at Mountain View Drive - Left Turn Phasing Upgrade	\$34,669
T72	Milliken Avenue at Terra Vista Parkway - Left Turn Phasing Upgrade	\$34,669
T73	Milliken Avenue at Victoria Park Lane - Left Turn Phasing Upgrade	\$34,669
T74	Milliken Avenue at Vintage Drive - Left Turn Phasing Upgrade	\$34,669
	Total:	\$28,289,587

Signal Interconnect System

	Total:	\$10,677,932
SI1	Signal Interconnect System	\$10,677,932
	Project	Estimate

Program Totals

Category	Estimate
Freeway Interchanges	\$88,622,432
Railroad Grade Separations and Crossings	\$19,447,532
Bridges	\$21,862,026
Streets	\$109,286,556
Traffic Signals	\$28,289,587
Signal Interconnect System	\$10,677,932
Total:	\$278,186,065

DIF Program Cost

Item	Estimate
Program Total	\$278,186,065
Less Fund Balance as of 2005	-\$20,000,000
Sub-Total	\$258,186,065
Administration Fee (15%)	\$38,727,910
Total:	\$296,913,974

EXHIBIT "B" TRANSPORTATION DEVELOPMENT FEES

Land Use Type	Fee
Residential - Single Family Detached Unit	\$12,708
Residential - Multiple Family Attached Unit	\$7,625
Apartment or Condominium - Attached Unit	\$7,625
Senior Housing Attached Unit (Condo or Apartment) – Per Bedroom	\$2,542
Nursing / Congregate Care - Per Bed	\$2,542
Commercial - Per 1,000 Square Feet	\$19,062
Office / Business Park - Per 1,000 Square Feet	\$15,250
Industrial - Per 1,000 Square Feet	\$7,625
Warehouse - Per 1,000 Square Feet	\$6,354
Hotel / Motel - Per Room	\$10,166
Day Care - Per Student	\$3,177
Self-Storage - Per Unit	\$254
Service Station - Per Pump	\$63,540

EXHIBIT "C" TRANSPORTATION FEE PROGRAM CALCULATIONS

Vacant Land as of February 2005

Vacant Residential Property = 950 acres Single Family Dwelling Units (SFDU) = 5,363 units Multi-Family Dwelling Units (MFDU) = 5,248 units

Vacant Industrial Property = 719 acres = 31,319,640 square feet

Assuming that the average floor area ratio for General Industrial is 0.5 then the future square footage of industrial development is 31,319,640 square feet x 0.5 = 15,659,820 square feet.

Vacant Commercial Property = 334 acres = 14,549,040 square feet

Assuming that the average floor area ratio for General Commercial is 0.25, then the future square footage of commercial development is 14,549,040 square feet x 0.25 = 3,637,260 square feet.

Equivalent Dwelling Units (EDU) per Land Use

Different types of land uses have different traffic trip generation rates. In order for nexus fees to be tabulated for each type of land use, the "Equivalent Dwelling Units" or EDU for each type of land use must first be determined. The calculation of a particular land use type's EDU is based on the traffic trip generation rate for that land use from the ITE Trip Generation Manual. Per City Resolution No. 91-092, the EDU for various land uses was determined to be as follows:

Land Use Type	EDU
Residential - Single Family Detached Unit	1.0 EDU
Residential - Multiple Family Attached Unit	0.6 EDU
Apartment or Condominium - Attached Unit	0.6 EDU
Senior Housing Attached Unit (Condo or Apartment) – Per Bedroom	0.2 EDU
Nursing / Congregate Care - Per Bed	0.2 EDU
Commercial - Per 1,000 Square Feet	1.5 EDU
Office / Business Park - Per 1,000 Square Feet	1.2 EDU
Industrial - Per 1,000 Square Feet	0.6 EDU
Warehouse - Per 1,000 Square Feet	0.5 EDU
Hotel / Motel - Per Room	0.8 EDU
Day Care - Per Student	0.25 EDU
Self-Storage - Per Unit	0.02 EDU
Service Station - Per Pump	5.0 EDU

Total Future Equivalent Dwelling Units (EDU)

Land Use	Vacant Land as of February 2005	EDU by Land Use	Future Equivalent Dwelling Units
Single-Family Dwelling Unit	5,363 Units	1.00	5,363
Multi-Family Dwelling Unit	5,248 Units	0.60	3,149
Industrial Park (per 1,000 SF)	15,659,820 Square Feet	0.60	9,396
Commercial (per 1,000 SF)	3,637,260 Square Feet	1.50	5,455
Total Future EDU			23,363

Calculate Cost per Equivalent Dwelling Unit (EDU)

Item	Fees
Total Cost of Projects	\$219,199,343
Total Future EDU (as of February 2005)	23,363
Cost per EDU	\$9,382

Calculate Transportation Development Fees by Land Use

Item	EDU by Land Use	Fees
Residential - Single Family Detached Unit	1.0 EDU	\$12,708
Residential - Multiple Family Attached Unit	0.6 EDU	\$7,625
Apartment or Condominium - Attached Unit	0.6 EDU	\$7,625
Senior Housing Attached Unit (Condo or Apartment) – Per Bedroom	0.2 EDU	\$2,542
Nursing / Congregate Care - Per Bed	0.2 EDU	\$2,542
Commercial - Per 1,000 Square Feet	1.5 EDU	\$19,062
Office / Business Park - Per 1,000 Square Feet	1.2 EDU	\$15,250
Industrial - Per 1,000 Square Feet	0.6 EDU	\$7,625
Warehouse - Per 1,000 Square Feet	0.5 EDU	\$6,354
Hotel / Motel - Per Room	0.8 EDU	\$10,166
Day Care - Per Student	0.25 EDU	\$3,177
Self-Storage - Per Unit	0.02 EDU	\$254
Service Station - Per Pump	5.0 EDU	\$63,540

Appendix B – Completed DIF Projects List (Resolution No. 20-122)

Project ID		Project
Freeway Interchanges	1	Base Line Road at 1-15 Freeway- Widen NB & SB On-Ramps
Freeway Interchanges	2	Foothill Boulevard at 1-15 Freeway - Widen NB & SB On-Ramps
Freeway Interchanges	3	Base Line Road at 1-15 Freeway - Interchange Improvements
Railroad Grade Separations and Crossings	1	Haven Avenue at Metrolink Crossing - Grade Separation
Railroad Grade Separations and Crossings	4	Hellman Avenue at 8th Street - Upgrade Existing RXR Crossing Gates
Bridges	4	Banyan Street at Etiwanda Creek Channel - Bridge
Bridges	8	Wilson Avenue at Etiwanda Creek Channel - Bridge
Streets	4	Banyan Street - Etiwanda Avenue to East Avenue - Widen North Side
Streets	5	Banyan Street - East Avenue to Wardman Bullock Road - New Alignment
Streets	10	East Avenue - Fire Station to Wilson - New
Streets	22	Haven Avenue - Base Line Road to 1-210 Freeway - Widen West Side Only
Streets	25	Milliken Avenue - 5th Street to 700' S/O 5th Street - Widen West Side Only
Streets	26	Victoria Street - East Property Line of Etiwanda High School to 1-15 Freeway - Improve Both Shoulders
Streets	27	Vintage Drive - Etiwanda Avenue to 1,300' W/O Etiwanda Avenue - New
Streets	30	Wilson Avenue - East Avenue to Wardman Bullock Road - New
Traffic Signal Improvements	1	4th Street at Richmond Place
Traffic Signal Improvements	2	4th Street at Utica Avenue
Traffic Signal Improvements	3	6th Street at Buffalo Avenue
Traffic Signal Improvements	4	6th Street at Cleveland Avenue
Traffic Signal Improvements	6	6th Street at Hellman Avenue
Traffic Signal Improvements	8	6th Street at Rochester Avenue
Traffic Signal Improvements	10	6th Street at Utica Avenue
Traffic Signal Improvements	11	Archibald Avenue at Banyan Street
Traffic Signal Improvements	12	Archibald Avenue at San Bernardino Road
Traffic Signal Improvements	15	Arrow Route at Center Avenue

Traffic Signal Improvements	17	Banyan Street at Wardman Bullock Road
Traffic Signal Improvements	18	Base Line Road at San Carmela Court
Traffic Signal Improvements	19	Base Line Road at Shelby Place
Traffic Signal Improvements	20	Carnelian Street at Banyan Street
Traffic Signal Improvements	21	Carnelian Street at Wilson Avenue
Traffic Signal Improvements	23	Church Street at Elm Avenue (West)
Traffic Signal Improvements	24	Church Street at Mayten Avenue
Traffic Signal Improvements	26	Church Street at Terra Vista Parkway
Traffic Signal Improvements	29	Day Creek Boulevard at Madrigal Place
Traffic Signal Improvements	30	Day Creek Boulevard at Wilson Avenue
Traffic Signal Improvements	31	East Avenue at Miller Avenue
Traffic Signal Improvements	33	Etiwanda Avenue at Garcia Drive
Traffic Signal Improvements	34	Etiwanda Avenue at Whittram Avenue
Traffic Signal Improvements	35	Foothill Boulevard at Cornwall Court
Traffic Signal Improvements	36	Foothill Boulevard at East Avenue
Traffic Signal Improvements	38	Haven Avenue at Trademark Street
Traffic Signal Improvements	39	Haven Avenue at Valencia Avenue
Traffic Signal Improvements	40	Haven Avenue at Wilson Avenue
Traffic Signal Improvements	41	Hellman Avenue at 8th Street
Traffic Signal Improvements	42	Hermosa Avenue at Church Street
Traffic Signal Improvements	43	Milliken Avenue at 5th Street
Traffic Signal Improvements	45	Rochester Avenue at Jersey Boulevard
Traffic Signal Improvements	46	Spruce Avenue at Elm Avenue
Traffic Signal Improvements	55	Wilson Avenue at San Sevaine Road
Traffic Signal Improvements	56	Wilson Avenue at Wardman Bullock Road
Traffic Signal Improvements	57	Wilson Avenue at Canistel Avenue
Traffic Signal Improvements	60	Arrow Route at Etiwanda Avenue - Left Turn Phasing Upgrade
Traffic Signal Improvements	61	Arrow Route at Red Oak Street - Left Turn Phasing Upgrade
Traffic Signal Improvements	62	Arrow Route at White Oak Street - Left Turn Phasing Upgrade
Traffic Signal Improvements	63	Banyan Street at East Avenue - Left Turn Phasing Upgrade
Traffic Signal Improvements	64	Base Line Road at Mountain View Drive - Left Turn Phasing Upgrade
Traffic Signal Improvements	65	Base Line Road at Spruce Avenue - Left Turn Phasing Upgrade
Traffic Signal Improvements	66	Base Line Road at Valencia Avenue - Left Turn Phasing Upgrade

Traffic Signal Improvements	67	Day Creek Boulevard at Silverberry Street - Left Turn Phasing Upgrade
Traffic Signal Improvements	68	Day Creek Boulevard at Sugar Gum Street - Left Turn Phasing Upgrade
Traffic Signal Improvements	69	Day Creek Boulevard at Victoria Park Lane - Left Turn Phasing Upgrade
Traffic Signal Improvements	70	Milliken Avenue at Millenium Court - Left Turn Phasing Upgrade
Traffic Signal Improvements	71	Milliken Avenue at Mountain View Drive - Left Turn Phasing Upgrade
Traffic Signal Improvements	72	Milliken Avenue at Terra Vista Parkway - Left Turn Phasing Upgrade
Traffic Signal Improvements	73	Milliken Avenue at Victoria Park Lane - Left Turn Phasing Upgrade
Traffic Signal Improvements	74	Milliken Avenue at Vintage Drive - Left Turn Phasing Upgrade

Appendix C – DIF Project List and Project Cost Estimates

Project ID	Project Name/Location	Description/Location	Quantity* (Mile or Lane Mile)	Total Project Cost Estimate	New Development Contribution (Percentage)	Future Development Contribution Amount
F 1	Grove Avenue/ 4th Street at 1-10 Freeway	Interchange improvement	-	\$12,000,000	100.0%	\$12,000,000
R 1	6th Street E/O Santa Anita Avenue	RXR crossing improvement	-	\$3,719,000	100.0%	\$3,719,000
B 1	6th Street at Cucamonga Creek Channel	Widen existing bridge or use prefab bridge adjacent to existing structure	-	\$5,625,000	100.0%	\$5,625,000
B 2	Arrow Route at Etiwanda Ditch	Widen existing bridge	-	\$7,593,750	100.0%	\$7,593,750
В 3	Whittram Avenue at Etiwanda Ditch	Construct new Bridge	-	\$5,625,000	100.0%	\$5,625,000
B 4	Wilson Avenue at Day Creek Channel	Construct new bridge	-	\$3,900,000	100.0%	\$3,900,000
S 1	Arrow Route Grove Ave to Baker Ave	Complete Streets	1.00	\$4,500,000	29.6%	\$1,332,000
S 2	Cherry Avenue roadway widening	Widen west side of Cherry Ave from Wilson Ave to Channel	0.30	\$675,000	100.0%	\$675,000
S 3	Church Street buffered bike lanes	From Ramona Ave to Haven Ave	0.75	\$842,625	29.6%	\$249,417
S 4	East Avenue roadway widening north of I-15	Widen from 1-15 to Victoria Street at bottleneck locations	-	\$1,987,500	100.0%	\$1,987,500
S 5	East Avenue extension north of Wilson Ave	Wilson Avenue to North Rim Way- New	1.00	\$1,987,500	100.0%	\$1,987,500
S 6**	Etiwanda Avenue roadway widening south of Arrow Rte	Widen 2 to 4 lanes from Arrow Rte to Whittram Ave	0.30	\$1,800,000	100.0%	\$1,800,000
S 7	Etiwanda Avenue roadway widening north of Miller Ave	Widen east side of Etiwanda Ave from Miller Ave to 850' north of Miller Ave	1.00	\$360,000	100.0%	\$360,000

S 8**	Foothill Boulevard - Hellman Avenue to 700' E/O Hellman Avenue	Widen north side of Foothill Blvd from Hellman Ave to 700' east of Hellman Ave	0.30	\$292,500	100.0%	\$292,500
S 9**	Foothill Boulevard - Archibald Avenue to Hermosa Avenue	Widen 4 to 6 lanes from Archibald Ave to Hermosa Ave	1.00	\$1,987,500	100.0%	\$1,987,500
S 10**	Grove Avenue roadway widening north of 9th St	Widen east side of Grove Ave from 1 to 2 lanes between 9th St and Tapia Via Dr	0.30	\$795,000	100.0%	\$795,000
S 11**	Grove Avenue roadway widening south of Foothill Blvd	Widen east side of Grove Ave from 1 to 2 lanes between San Bernardino Rd and Foothill Blvd	1.00	\$292,500	100.0%	\$292,500
S 12	Wilson Avenue extension west of Day Creek Blvd	Wilson Ave extension from Milliken Ave to Day Creek Blvd	0.30	\$3,975,000	100.0%	\$3,975,000
S 13	Wilson Avenue extension east of Etiwanda Ave (Backbone Only)	Wilson Ave extension from Etiwanda Ave to East Ave	1.00	\$1,987,500	100.0%	\$1,987,500
INT 1	6th Street at Pittsburgh Avenue	New Traffic Signal	-	\$825,000	100.0%	\$825,000
INT 2	6th Street at Santa Anita Avenue	New Traffic Signal	-	\$825,000	100.0%	\$825,000
INT 3	Archibald Avenue at Victoria Street	New Traffic Signal	-	\$825,000	100.0%	\$825,000
INT 4	Banyan Street at Rochester Avenue	Roundabout	-	\$2,250,000	100.0%	\$2,250,000
INT 5	Church Street at Ramona Avenue	Roundabout	-	\$2,250,000	100.0%	\$2,250,000
INT 6	Civic Center Drive at Red Oak Street	Roundabout	-	\$2,250,000	100.0%	\$2,250,000
INT 7	Ridgeline Place at Wilson Avenue	Roundabout	-	\$2,250,000	100.0%	\$2,250,000
INT 8	East Avenue at Highland Avenue	Roundabout	-	\$2,250,000	100.0%	\$2,250,000
INT 9	Foothill Boulevard at Malachite Avenue	New Traffic Signal	-	\$825,000	100.0%	\$825,000
INT 10	Milliken Avenue at Wilson Avenue	Roundabout	-	\$2,250,000	100.0%	\$2,250,000

INT 11	Spruce Avenue at Mountain View Drive	Roundabout	-	\$2,250,000	100.0%	\$2,250,000
INT 12	Spruce Avenue at Red Oak Street	Roundabout	-	\$2,250,000	100.0%	\$2,250,000
INT 13	Terra Vista Parkway at Spruce Avenue	Roundabout	-	\$2,250,000	100.0%	\$2,250,000
INT 14	Terra Vista Parkway at Town Center Drive	Roundabout	-	\$2,250,000	100.0%	\$2,250,000
INT 15	Town Center Drive at Elm Avenue	Roundabout	-	\$2,250,000	100.0%	\$2,250,000
INT 16	Wilson Avenue at East Avenue	Roundabout	-	\$2,250,000	100.0%	\$2,250,000
INT 17	Wilson Avenue at Etiwanda Avenue	Roundabout	-	\$2,250,000	100.0%	\$2,250,000
INT 18	4th Street at Golden Oak Road - Left Turn Phasing Upgrade	Traffic signal modification	-	\$55,000	29.6%	\$16,280
INT 19	Archibald Avenue at Banyan Street - Left Turn Phasing Upgrade	Traffic signal modification	-	\$55,000	29.6%	\$16,280
INT 20	Signal Interconnect System	Citywide traffic signal communication improvements	-	\$75,000,000	100.0%	\$75,000,000
Т 1	Cucamonga Creek Channel from Base Line Road to Foothill Boulevard	Trail improvements	1.1	\$948,750	29.6%	\$280,830
T 2	Cucamonga Creek Channel at Base Line Road	Trail crossing improvements	-	\$825,000	29.6%	\$244,200
Т3	Cucamonga Creek Channel at Foothill Boulevard	Trail crossing improvements	-	\$825,000	29.6%	\$244,200
T 4	Cucamonga Creek Channel at Arrow Route	Trail crossing improvements	-	\$825,000	29.6%	\$244,200
T 5	Cucamonga Creek Channel at 9th Street	Trail crossing improvements	-	\$112,500	29.6%	\$33,300

Т 6	Cucamonga Creek Channel at 6th Street	Trail crossing improvements	-	\$825,000	29.6%	\$244,200
T 7	Deer Creek Channel at Foothill Boulevard	Trail crossing improvements	-	\$825,000	29.6%	\$244,200
T 8	Deer Creek Channel at Arrow Route	Trail crossing improvements	-	\$825,000	29.6%	\$244,200
Т 9	Deer Creek Channel at 6th Street	Trail crossing improvements	-	\$825,000	29.6%	\$244,200
T 10	Day Creek Channel at Victoria Park Lane	Trail crossing improvements	-	\$112,500	29.6%	\$33,300
T 11	Day Creek Channel at Base Line Road	Trail crossing improvements	-	\$825,000	29.6%	\$244,200
CRH 4	Archibald Avenue Buffered Bike Lanes and Ped Enhancements	Base Line Rd to Foothill Blvd, Arrow Rte to 7th St	1.50	\$690,000	29.6%	\$204,240
CRH 5	San Bernardino Road Stripe Shoulders	Vineyard Ave to Archibald Ave	-	\$122,000	29.6%	\$36,112
CRH 6	Church Street Buffered Bike Lanes and Stripe Shoulders	Pepper St to Ramona Ave	1.10	\$486,000	29.6%	\$143,856
CRH 11	Hermosa Avenue Buffered Bike Lane and New Sidewalks	Base Line Rd to Foothill Blvd	1.00	\$741,000	29.6%	\$219,336
CRH 14	Feron Boulevard Ped Enhancements	Archibald Ave to Hermosa Ave	-	\$191,000	29.6%	\$56,536
E 1	Banyan Street Ped Enhancements and Buffered Lanes	Deer Creek Channel to Wardman Bullock Rd	3.70	\$3,853,000	29.6%	\$1,140,488
E 2	Day Creek Boulevard Buffered Bike Lanes and Ped Enhancements	Etiwanda Ave to SR-210 WB Ramp	2.20	\$1,144,000	29.6%	\$338,624
E 4	Etiwanda Avenue Bike Route and Ped Crossing Enhancements	SR-210 to Banyan St, Saddleridge Dr to Victoria St	0.50	\$274,000	29.6%	\$81,104

E 5	Wilson Avenue Buffered Bike Lane and Ped Crossing Enhancements	Day Creek Blvd to Etiwanda Ave, Wardman Bullock Rd to Cherry Ave, Wilson Ave at Bluegrass Ave	1.70	\$1,017,000	29.6%	\$301,032
E 6	Victoria Street Ped Enhancements	East Ave and I-15	-	\$69,000	29.6%	\$20,424
E 7	East Avenue Buffered Bike Lane and New Sidewalks	Banyan St to Philly Dr	0.40	\$1,328,000	29.6%	\$393,088
E 8	Base Line Road Ped and Bike Enhancements	Wanona PI to Shelby PI	0.27	\$486,000	29.6%	\$143,856
E 9	Duncaster Place Ped Enhancements	Coyote Dr and Duncaster Pl, Stoneview Rd and Duncaster Pl	-	\$258,000	29.6%	\$76,368
E 10	Etiwanda Creek Channel Multi- Use Trail	PE Trail to Victoria St	1.80	\$987,000	29.6%	\$292,152
E 11	Summit Intermediate/ Etiwanda Creek Park Connection	Etiwanda Creek Parking Lot	1.90	\$42,000	29.6%	\$12,432
CNE 1	Terra Vista Parkway Ped/Bike Enhancements	Terra Vista Pkwy to Hampton Pl	1.90	\$1,443,000	29.6%	\$427,128.0
CNE 2	Spruce Avenue Ped Enhancements	Spruce Ave at Terra Vista Pkwy, Mountain View Dr, Elm Ave	-	\$589,000	29.6%	\$174,344
CNE 8	Base Line Road Buffered Bike Lane and Deer Creek Trail Crossing	Haven Ave to Etiwanda Ave	3.00	\$1,461,000	29.6%	\$432,456
CNE 9	Elm Avenue Crossing Enhancements and Sidewalk at Coyote Canyon Elementary	Spruce Ave to Church St	-	\$49,000	29.6%	\$14,504
CNE 10	Church Street Buffered Bike Lanes	Mayten Ave to I-15	1.80	\$856,000	29.6%	\$253,376
CNE 11	Day Creek Boulevard Buffered Bike Lanes	Highland Ave to Foothill Blvd	1.90	\$688,000	29.6%	\$203,648
CNE 13	Lark Drive New Crosswalks	Lark Dr at Rochester Ave, Matera Pl	-	\$76,000	29.6%	\$22,496

CNE 14	Miller Avenue Buffered Bike Lanes, Sidewalks and Ped Enhancements	I-15 to East Ave	0.50	\$444,000	29.6%	\$131,424
CNE 15	Dolcetto Place and Garcia Drive Buffered Bike Lanes	Garcia Dr from Etiwanda Ave to Dolcetto Pl, Colcetto Pl from Miller Ave to Garcia Dr	0.60	\$212,000	29.6%	\$62,752
CSS 2	Spruce Avenue and Red Oak Street Ped/Bike Enhancements	Foothill Blvd to Arrow Rte	1.00	\$3,637,000	29.6%	\$1,076,552
CRH 15	6th St Cucamonga Creek Channel to Haven Ave	Bicycle Corridor Improvements	1.58	\$1,232,400	29.6%	\$364,790
CCS 3	Jersey Blvd Haven Ave to Rochester Ave	Bicycle Corridor Improvements	0.55	\$429,000	29.6%	\$126,984
DTRC 1	Foothill Blvd highway to city center boulevard transformation	Rochester to ECL	-	\$22,250,000	29.6%	\$6,586,000
DTRC 5	Day Creek Channel Trail and Park Drive (Foothill Blvd) crossing	New signalized crossing	-	\$825,000	29.6%	\$244,200
DTRC 6	Day Creek Channel Trail	8th St to Future Etiwanda Heights	3.4	\$4,810,000	29.6%	\$1,423,760
CC 1	Foothill Blvd AT transformation	Haven Ave to Rochester Ave	-	\$109,375,000	29.6%	\$32,375,000
CC 1.1	Haven Ave AT transformation	Foothill Blvd to 7th St	-	\$78,125,000	29.6%	\$23,125,000
CC 2	Church St buffered bike lanes	Haven Ave to Mayten Ave (east of Mayten in Connect RC)	1.43	\$1,115,400	29.6%	\$330,158
CC 2.1	Arrow Rte buffered bike lanes	Hermosa Ave to Rochester Ave	2.23	\$1,739,400	29.6%	\$514,862
CC 2.2	Hermosa Ave buffered bike lanes	Foothill Blvd to 6th St	1.52	\$1,185,600	29.6%	\$350,937
CC 3	Devon St extension	Devon St terminus to Civic Center Dr terminus	0.30	\$596,250	100.0%	\$596,250
HART 2	Rochester Ave buffered bike lanes	Foothill Blvd to 6th St	1.32	\$1,029,600	29.6%	\$304,761
HART 3	Azusa Ct extension	Azusa Ct terminus to Acacia St terminus	1.46	\$2,901,750	100.0%	\$2,901,750

HART 4	7th St extension	Milliken Ave to Haven Ave	0.88	\$1,749,000	100.0%	\$1,749,000
RH 6	Foothill Blvd from Haven Ave to WCL	Class IV bicycle corridor and complete streets improvements	-	\$19,125,000	29.6%	\$5,661,000
CTC 1	Archibald AT transformation with buffered bike lanes	7th St to 4th St	-	\$9,375,000	29.6%	\$2,775,000
CTC 6	9th St extension (roadway)	Archibald Ave and Hermosa Ave	0.74	\$1,470,750	100.0%	\$1,470,750
SEIQ 2	Arrow Rte buffered bike lanes	Rochester Ave to Etiwanda Ave	1.25	\$975,000	29.6%	\$288,600
SEIQ 2.2	6th St buffered bike lanes	Spur line to Etiwanda Ave	0.72	\$561,600	29.6%	\$166,233
SEIQ 3	Whittram Ave extension	Etiwanda Ave to Rochester Ave	2.92	\$14,803,500	100.0%	\$14,803,500
SIEQ 6	Etiwanda Grade Separation (EGS)		-	\$185,000,000	60.0%***	\$111,000,000
		Total Program Costs:		\$819,668,000		\$379,485,000

^{*} Quantity of improved facilities in miles, or lane miles for roadways.

^{**} Program Contribution cost shown for this project is the amount before deduction for deficiencies calculated and shown in Table 8 and deducted from DIF Program Contribution in Table 14.

^{***} Final project cost contribution by future development reduced by 40% in anticipation of future grant funding opportunities.